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1. Introduction 

Impressive results over the last year on non-perturbative properties of N = 2 super- 
symmetric Yang-Mills theories [ 1,2] and their extension to string theory [3-61 through the 
notion of string-string duality [7,8], have used the deep underlying mathematical struc- 
ture of these theories and its relation to algebraic geometry (9-181. In the case of N = 2 
vector multiplets, describing the effective interactions in the abelian (Coulomb) phase of a 
spontaneously broken gauge theory, Seiberg and Witten [ 11 have shown that positivity of 
the metric on the underlying moduli space identifies the geometrical data of the effective 
N = 2 rigid theory with the periods of a particular torus. 

In the coupling to gravity it was conjectured by some of the present authors [3,4] and later 
confirmed by heterotic-Type II duality [ 11,12,18,19], that the very same argument based 
on positivity of the vector multiplet kinetic metric identifies the corresponding geometrical 
data of the effective N = 2 supergravity with the periods of Calabi-Yau threefolds. 

On the other hand, when matter is added, the underlying geometrical structure is much 
richer, since N = 2 matter hypermultiplets are associated with quatemionic geometry 
[21-231, and charged hypermultiplets are naturally associated with the gauging of triholo- 
morphic isometries of these quatemionic manifolds [24,25]. 

It is the aim of this paper to complete the general form of the N = 2 supergravity 
Lagrangian coupled to an arbitrary number of vector multiplets and hypermultiplets in 
presence of a general gauging of the isometries of both the vector multiplets and hypermul- 
tiplets scalar manifolds. Actually this extends results already obtained years ago by some 
of us [24], that in turn extended previous work by Bagger and Witten on ungauged gen- 
eral quatemionic manifolds coupled to N = 2 supergravity [21], by de Wit, Lauwers and 
Van Proeyen on gauged special geometry and gauged quatemionic manifolds obtained by 
quatemionic quotient in the tensor calculus framework [26], and by Castellani, D’Auria and 
Ferrara on covariant formulation of special geometry for matter coupled supergravity [27]. 

This paper firstly provides in a geometrical setting the full Lagrangian with all the 
fermionic terms and the supersymmetry variations. Secondly, it uses a coordinate indepen- 
dent and manifestly symplectic covariant formalism which in particular does not require 
the use of a prepotential function F(X). Whether a prepotential F(X) exists or not depends 
on the choice of a symplectic gauge [4]. Moreover, some physically interesting cases are 
precisely instances where F(X) does not exist [4]. 

Of particular relevance is the fact that we exhibit a scalar potential for arbitrary quater- 
nionic geometries and for special geometry not necessarily in special coordinates. This 
allows us to go beyond what is obtainable with the tensor calculus (or superspace) ap- 
proach. Among many applications, our results allow the study of general conditions for 
spontaneous supersymmetry breaking in a manner analogous to what was done for N = 1 
matter coupled supergravity [28]. Many examples of supersymmetry breaking studied in 
the past are then reproduced in a unified framework. 

Recently the power of using simple geometrical formulae for the scalar potential was ex- 
ploited while studying the breaking of half supersymmetries in a particular simple model, us- 
ing a symplectic basis where F(X) is not defined [29]. The method has potential applications 
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in string theory to study non-perturbative phenomena such as conifold transitions [lo], p- 
form condensation [30] and Fayet-Iliopoulos terms [29,32]. N = 2 supergravity displays 
a high degree of complexity in its structure, based however on the simplicity of few princi- 
ples. The supersymmetric Lagrangian and the transformation rules are indeed quite involved 
but all the couplings, the mass matrices and the vacuum energy are completely fixed and 
organized in terms of three geometrical data: 
(1) The choice of a special Kahler manifold SM describing the self-interactions of the 

vector multiplets. 
(2) The choice of a quatemionic manifold ‘FIM describing the self-interaction of the hy- 

permultiplets. 
(3) The choice of a gauge group 6, that in the non-abelian case must be a subgroup of the 

isometry group of the scalar manifold Mscalar = SM C3 ‘FtM with a block-diagonal 
immersion in the symplectic group Sp(2Z+2, iw) of electric-magnetic duality rotations 
(see Eq. (6.4)). 

For this reason we devote the first and largest part of the paper (Sections 2-7) to review 
and discuss, in a way independent from supersymmetric Lagrangians and supersymmetry 
algebras, the geometrical ingredients of the construction that we listed above. This part of the 
paper can be read as an independent essay and should be quite accessible to mathematicians 
as well as to readers who have no background or interest in supersymmetry. 

The second part of the paper (Sections 8 and 9) presents instead the Lagrangian and 
supersymmetry transformation rules for both N = 2 supergravity and N = 2 matter 
coupled rigid Yang-Mills theory that is retrieved from supergravity in the infinite Planck 
mass limit p + co. The theory is presented in a completely explicit component formalism, 
and no formulae employ or require the use of superfields, superspace or conformal tensor 
calculus. All items entering such formulae are rather geometrical objects whose nature and 
properties were described and explained in previous sections. 

The reader interested in applications of N = 2 supergravity or Yang-Mills theory can 
directly jump to Sections 8 and 9, that are self-contained, and insert, in the ready-to-use 
formulae the specific geometrical data corresponding to the problem considered. References 
to formulae in previous sections are given to fix normalizations. 

The derivation of the results presented in Sections 8 and 9 was obtained by means of 
the geometric (“rheonomic”) approach (for a general review see the book by some of us 
[31]). The details of the derivation are given in Appendices A-D for the interested reader, 
while the results are presented in the main text. It is indeed one of the main advantages of 
the geometrical approach to supersymmetry that the final outcome of the construction is 
directly written in space-time component formalism. 

As emphasized our results are general and apply to generic choice of the scalar manifold. 
As an illustration of our formulae in the appendix we specialize them to the case of the 
manifolds (1.1). More specifically, our paper is organized as follows: 

(1) Section 2 reviews duality rotations and symplectic covariance in field theory. 
(2) Section 3 describes the symplectic embedding of the homogeneous spaces, in partic- 

ular the special symmetric spaces which appear at tree level in heterotic string theory. 
(3) Section 4 reviews special Kahler geometry, both for rigid and local supersymmetry. 
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Section 5 describes the geometry of hypermultiplets, their associated quatemionic and 
hyperKalrler manifolds in local and rigid supersymmetry. 
Section 6 faces the gauging of special and quaternionic manifolds. 
Section 7 deals with the so-called momentum map on special K%hler and quaternionic 
manifolds giving rise to the introduction of prepotential functions which enter in the 
construction of the scalar potential. 
Section 8 reports the full N = 2 Lagrangian in a symplectic covariant form. 
Section 9 contains the rigid limit and reports the general form of a matter coupled 
N = 2 super Yang-Mills theory on a generic rigid special manifold and a generic 
rigid hyperKalrler manifold. 
Appendices A and B give a detailed derivation of the Lagrangian and transformation 
rules using the geometrical approach. 
Appendix C deals with the relevant formulae for N = 2 supergravity based on the 
manifolds: 

special manifold = ST[2, n] E 
SU(l, 1) 

U(l) @ 

SOG n) 
SO(2) x SO(n)’ 

SO(4, m) 
quaternionic manifold = HQ[m] E 

SO(4) x SO(m). 

(1.1) 

This is done as an exemplification of the general formulae for the potential, mass 
matrices and kinetic period matrices and for its intrinsic interest in applications to 
tree-level string theory 
Appendix D contains a list of conventions and normalizations that we have employed. 

A short version of this paper is given in [33]. 

2. Duality rotations and symplectic covariance 

In this section, both for completeness and in order to fix our conventions and notations, we 
review the general structure of an abelian theory of vectors and scalars displaying covariance 
under a group of duality rotations. The basic reference is the paper by Gaillard and Zumino 
[46]. A general presentation in D = 2p dimensions was recently given in [47]. Here we fix 
D = 4. 

We consider a theory of ii gauge fields A,, A in a D = 4 space-time with Lorentz signature. 
They correspond to a set of 7t differential 1 -forms 

A” E A” dxp P (A= I,...,$. 

The corresponding field strengths and their Hodge duals are defined by 

F” = dA” = 3;,, dxP A dx”, 3;” E ;@,A: - &A;), 

*F” E ?A &+ /, dxV, WV y” s 1, ILV 2 PWf-7 34w . 

(2.1) 

(2.2) 

Defining the space-time integration volume as 

d4x = -$,slr,...Pl dxFL’ A . . . A dxw4, (2.3) 
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we obtain 

F” A F= = ~~~~~~~~~~~ d%, F” A* F’ = -2F,$Fc’Pv d4x . (2.4) 

In addition to the gauge fields let us also introduce a set of real scalar fields $’ (I = 1, . . . , E) 
spanning an X-dimensional manifold Mscalar * endowed with a metric g[ J (4). Utilizing 
the above field content we can write the following action functional: 

S = ; s {[ync(@)F” A *F= + On,(@)F" A +I 

where the scalar fields dependent Z x Fi matrix VAX (4) generalizes the inverse of the squared 
coupling constant l/g* appearing in ordinary gauge theories. The field dependent matrix 
8Az (4) is instead a generalization of the theta-angle of quantum chromodynamics. Both y 
and 0 are symmetric matrices. Introducing a formal operator j that maps a field strength 
into its Hodge dual 

(j3A),,, E ~Epvpo3A’pa 

and a formal scalar product 

(2.6) 

(G, K) = GTK s 5 G;,KA'pV, (2.7) 
A=1 

the total Lagrangian of Eq. (2.5) can be rewritten as 

Pot) = 3T(-y 63 1 + 8 @ j)3+ ~g1~(4>a~$‘P4~. (2.8) 

The operator j satisfies j* = -1 so that its eigenvalues are fi. Introducing self-dual and 
antiself-dual combinations 

3* = :(3& ij_F), j3* = FiF* (2.9) 

and the field-dependent symmetric matrices 

N = 0 - iy, 77 = e + iy, 

the vector part of the Lagrangian (2.8) can be rewritten as 

,C,,, = i[FTXF- - _FTfTNF+]. 

(2.10) 

(2.11) 

Introducing the new tensors 

(2.12) 

* Whether the 9’ can be arranged into complex fields is not relevant at this level of the discussion 



116 L. Andrianopoli et al. /Journal of Geometry and Physics 23 (1997) Ill-189 

which, in matrix notation, corresponds to 

jg c A ac -=-(~@1-8@j)~, 
2a.P 

(2.13) 

the Bianchi identities and field equations associated with the Lagrangian (2.5) can be written 
as 

a@.F;” = 0, (2.14) 

a@gA =o P” ’ (2.15) 

or equivalently 

ap Im Ftt = 0, (2.16) 

PIm$J~ =O. (2.17) 

This suggests that we introduce the 2% column vector 

(2.18) 

and that we consider general linear transformations on such a vector 

(2.19) 

For any matrix ( g i) E GL(2ii, R) the new vector V’ of magnetic and electric field 
strengths satisfies the same Eqs. (2.15) as the old one. In a condensed notation we can write 

av=o H av’=o. (2.20) 

Separating the self-dual and antiself-dual parts 

F= (F++F-), 6=(Gf+K) 

and taking into account that we have 

G+ = NP, G- =X.F-, 

the duality rotation of Eq. (2.19) can be rewritten as 

(2.21) 

(2.22) 

(;I)‘=(; ;)(;;+). (;I>‘=(; ;)($,-,_). (2.23) 

The problem is that the transformation rule (2.23) of 6* must be consistent with the defi- 
nition of the latter as variation of the Lagrangian with respect to _7=* (see Eq. (2.12)). This 
request restricts the form of the matrix A = ( : i ). As we are going to show, A must 
belong to the symplectic subgroup of the general linear group 

E Sp(271, R) c Gr.(2% R), (2.24) 
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the subgroup Sp(2E, R) being defined as the set of 2E x 2E matrices that satisfy the condition 

(2.25) 

that is, using n @ n block components 

ATC - CTA = BTD - DTB = 0, ATD - CTB = 1. (2.26) 

To prove the statement we just made, we calculate the transformed Lagrangian C’ and 
then we compare its variation (ZJP)/(a_PT) with G*’ as it follows from the postulated 
transformation rule (2.23). To perform such a calculation we rely on the following basic idea. 
While the duality rotation (2.23) is performed on the field strengths and on their duals, also 
the scalar fields are transformed by the action of some diffeomorphism 6 E Diff(M,,,,,,) 
of the scalar manifold and, as a consequence of that, the matrix JV also changes. In other 
words given the scalar manifold Mscalar we assume that there exists a homomorphism of 
the form 

~6 : Diff(M,,,l,,) - GL(2Ti, R) (2.27) 

so that 

V< E Diff(M,,,I,) : 4’ A 4” 3~(<) = (“c: 2) E GL(25, R). (2.28) 

(In the sequel the subfix < will be omitted when no confusion can arise and reinstalled when 
necessary for clarity. ) 

Using such a homomorphism we can define the simultaneous action of 6 on all the fields 
of our theory by setting 

where the notation (2.18) has been utilized. In the gauge sector the transformed Lagrangian 
is 

C&, = i[.FT(A + Bx)T$(A + Bp)F’- 

- 3+T(A + BNfN’(A + BhW+l. (2.30) 

Consistency with the definition of Gf requires that 

ni’ = N’(t($)) = (C + DN-@))(A + Bb%$))-‘3 (2.31) 

while consistency with the definition of G- imposes the transformation rule 

# = $(c(&) = (C + D~(@)(A + B%#4)-‘. (2.32) 

It is from the transformation rules (2.31) and (2.32) that we derive a restriction on the form 
of the duality rotation matrix A = ~8 (c). Indeed by requiring that the transformed matrix N 
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be again symmetric one easily finds that A must obey Eq. (2.29, namely A E Sp(25, R). 
Consequently the homomorphism of Eq. (2.27) specializes as 

16 : Diff(M,,,t,,) - Sp(2% R). (2.33) 

Clearly, since Sp(2Ti, W) is a finite-dimensional Lie group, while Diff(M,,,t,) is infinite- 
dimensional, the homomorphism lg can never be an isomorphism. Defining the Torelli group 
of the scalar manifold as 

(2.34) 

we always have 

dimTor(M,,,t,) = oo. (2.35) 

The reason why we have given the name of Torelli to the group defined by Eq. (2.34) is 
because of its similarity with the Torelli group that occurs in algebraic geometry. 

What should be clear from the above discussion is that a family of Lagrangians as in 
Eq. (2.5) will admit a group of duality-rotations/field-redefinitions that will map elements 
of the family into each other, as long as a kinetic matrix JI(AC can be constructed that 
transforms as in Eq. (2.3 1). A way to obtain such an object is to identify it with the period 
matrix occurring in problems of algebraic geometry. At the level of the present discussion, 
however, this identification is by no means essential: any construction of N4c with the 
appropriate transformation properties is acceptable. Note also that so far we have used the 
words duality-rotutions/~eZd-rede~nitions and not the word duality symmetry. Indeed the 
diffeomorphisms of the scalar manifold we have considered were quite general and, as such 
had no pretension to be symmetries of the action, or of the theory. Indeed the question we 
have answered is the following: what are the appropriate transformation properties of the 
tensor gauge fields and of the generalized coupling constants under diffeomorphisms of the 
scalar manifold? The next question is obviously that of duality symmetries. 

As it is the case with the difference between general covariance and isometries in the 
context of general relativity, duality symmetries correspond to the subset of duality trans- 
formations for which we obtain an invariance in form of the theory. In this respect, however, 
we have to stress that what is invariant in form cannot be the Lagrangian but only the set of 
field equations plus Bianchi identities. Indeed, while any A E Sp(2Ti, R) can, in principle, 
be an invariance in form of Eqs. (2.17), the same is not true for the Lagrangian. One can 
easily find that the vector kinetic part of this latter transforms as follows: 

+ F-“(CTA)ncF-C + $@ITB)“‘Q, (2.36) 

whence we conclude that proper symmetries of the Lagrangian are to be looked for only 
among matrices with C = B = 0. If C # 0 and B = 0, the Lagrangian varies through 
the addition of a topological density (see Eq. (6.7)). Elements of Sp(25, R) with B # 0, 
cannot be symmetries of the classical action under any circumstance. 
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The scalar part of the Lagrangian, on the other hand, is invariant under all those diffeo- 
morphisms of the scalar manifolds that are isometrics of the scalar metric glJ. Naming 
t* : TMscalar + TMscalar the push-forward of 6, this means that 

VX> Y E TMscalar g(X, Y) = gc$*x, c*u (2.37) 

and 6 is an exact global symmetry of the scalar part of the Lagrangian in Eq. (2.5). In 
view of our previous discussion these symmetries of the scalar sector are not guaranteed to 
admit an extension to symmetries of the complete action. Yet we can insist that they extend 
to symmetries of the field equations plus Bianchi identities, namely to duality symmetries 
in the sense defined above. This requires that the group of isometries of the scalar metric 
Z(Mscalar) be suitably embedded into the duality group Sp(2n. R) and that the kinetic 
matrix JVA c satisfies the covariance law 

N(t($)> = (Cc + D$%W(A~ + B+V-(gT1 . (2.38) 

3. Symplectic embeddings of homogenous spaces 

A general construction of the kinetic coupling matrix N can be derived in the case where 
the scalar manifold is taken to be a homogeneous space G/‘H. This is what happens in all 
extended supergravities for N >_ 3 and also in specific instances of N = 2 theories. For 
this reason we briefly review the construction of the kinetic period matrix N in the case of 
homogeneous spaces. Although the basic construction was introduced in the literature by 
Gaillard and Zumino in [46] and was reviewed by some of us in [31], a derivation of the 
basic formulae that matches completely with the modem notations of N = 2 and N = 4 
theories, such as they emerge in string compactifications and in the discussion of S-duality, 
is not available, to our knowledge, in the existing literature. To make the present paper 
self-contained we consider therefore essential to review such a construction in modem 
gear. 

The relevant homomorphism 16 (see Eq. (2.33)) becomes 

18 : Diff(C?/‘Ft) + Sp(2n, R). (3.1) 

In particular, focusing on the isometry group of the canonical metric defined on G/‘H : 3 
Z(G/X) = G we must consider the embedding 

1g : 6 + Sp(2E, R). (3.2) 

That in Eq. (3.1) is a homomorphism of finite-dimensional Lie groups and as such it con- 
stitutes a problem that can be solved in explicit form. What we just need to know is the 
dimension of the symplectic group, namely the number Tt of gauge fields appearing in the 
theory. Without supersymmetry the dimension m of the scalar manifold (namely the possible 

3 Actually, in order to be true, the equation ~(G/?I!) = G re mres that the normalizer of % in G be the q 
identity group, a condition that is verified in all the relevant examples. 
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choices of G/7-1) and the number of vectors ?I are unrelated so that the possibilities covered 
by Eq. (3.2) are infinitely many. In supersymmetric theories, instead, the two numbers m and 
Fare related, so that there are finitely many cases to be studied corresponding to the possible 
embeddings of given groups 6 into a symplectic group Sp(2Z, R) of fixed dimension Z. 
Actually taking into account further conditions on the holonomy of the scalar manifold that 
are also imposed by supersymmetry, the solution for the symplectic embedding problem is 
unique for all extended supergravities with N > 3 as we have already remarked (see for 
instance [31]). 

Apart from the details of the specific case considered once a symplectic embedding is 
given there is a general formula one can write down for the period matrix N that guarantees 
symmetry (n/r = N) and the required transformation property (2.38). This is the result we 
want to review. It will be useful in the sequel for comparison with the formulae of special 
geometry in the case the considered special manifold is homogeneous (see Appendix C, in 
particular). 

The real symplectic group Sp(2%, R) is defined as the set of all real 25 x 2Z matrices 

A = G ;> satisfying Eq. (2.29, namely 

AT@A = @, (3.3) 

where C 3 (y i’). If we relax the condition that the matrix should be real but we still 
impose Eq. (3.3), we obtain the definition of the complex symplectic group Sp(2F, C). It 
is a well-known fact that the following isomorphism is true: 

Sp(Z w - Usp(Z, n) = Sp(2Z, a=) l-l U(Z, n). (3.4) 

--. 
By definition an element S E Usp(n, n) is a complex matrix that satisfies simultaneously 
Eq. (3.3) and a pseudo-unitarity condition, that is 

STCS = C, S+WS = w, (3.5) 

where W = (A -4 ). The general block form of the matrix S is 

s= ; ;: ( 1 (3.6) 

and Eqs. (3.5) are equivalent to 

T+T - v+v = 1, T+V* - V+T* = 0. (3.7) 

The isomorphism of Eq. (3.4) is explicitly realized by the so-called Cayley matrix 

via the relation 

(3.8) 

s = cnc-1, (3.9) 
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which yields 

T = $(A + D) - &i(B - C), V = ;(A - 0) - ii(B + C). (3.10) 

-- 
When we set V = 0 we obtain the subgroup U(Z) c Usp(n, n), that in the real basis is 
given by the subset of symplectic matrices of the form (i -,“). The basic idea, to obtain 
the genera1 formula for the period matrix, is that the symplectic embedding of the isometry 
group G will be such that the isotropy subgroup IFI c G gets embedded into the maximal 
compact subgroup U(Z), namely 

SAUsp(Z, Z), G > Y-&U(n) c Usp@, n). (3.11) 

If this condition is realized, let L(4) be a parametrization of the coset G/l-l by means of 
coset representatives. Relying on the symplectic embedding of Eq. (3.11) we obtain a map 

(3.12) 

that associates to L,(4) a coset representative of Usp(F, Z)/ U (FL). By construction if 4’ # 4 
IZO unitary Z x Z matrix W CUPI exist such that 

(3.13) 

On the other hand let c E 4 be an element of the isometry group of (Ij/‘If. Via the symplectic 
embedding of Eq. (3.11) we obtain a Usp(n, n) matrix 

s, = (3.14) 

such that 

(3.15) 

where e(4) denotes the image of the point 4 E G/l-l through 4 and W(.ff, 4) is a suitable 
U(F) compensator depending both on c and 4. Combining Eqs. (3.15) and (3.12) with 
Eqs. (3.10) we immediately obtain: 

U,‘(t(+)) + U:(C(4)) = WU,?(4)(AT + iBT) + U1($)(AT - iBT>l, 
U,‘(<(#)) - U:(t(4)) = WU,I($)(DT - iCT) - U:(G>(DT + iCT)I. (3.16) 

Setting 

N = i[U+ + U+]-‘[U+ - U+] 0 1 0 1 (3.17) 

and using the result of Eq. (3.16) one checks that the transformation rule (2.38) is verified. 
It is also an immediate consequence of the analogue of Eqs. (3.7) satisfied by UO and UI 
that the matrix in Eq. (3.17) is symmetric 

@=N. (3.18) 
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Eq. (3.17) is the master formula derived in 198 1 by Gaillard and Zumino [46]. It explains 
the structure of the gauge field kinetic terms in all N 1 3 extended supergravity theories 
and also in those N = 2 theories where the special Kahler manifold SM is a homogeneous 
manifold G/3-1. 

3.1. Symplectic embedding of the Sl[m , n] homogeneous manifolds 

Because of their relevance in superstring compactifications let us illustrate the general 
procedure with the following class of homogeneous manifolds: 

Sl[m, n] E 
SU(l, 1) ~ SO(m, n) 

U(1) SO(m) @ SO(n) ’ 
(3.19) 

The isometry group of the S’T[m, n] manifolds defined in Eq. (3.19) contains a factor 
(SU(1, 1)) whose transformations act as non-perturbative S-dualities and another factor 
(SO(m, n)) whose transformations act as T-dualities, holding true at each order in string 
perturbation theory. The field S is obtained by combining together the dilaton D and the 
axion A: 

S = A - iexp[D], aILA z eWVpaa,B,,, (3.20) 

while ti is the name usually given to the moduli-fields of the compactified target space. 
Now in string and supergravity applications S will be identified with the complex coordi- 
nate on the manifold SU(1, l)/U( l), while ti will be the coordinates of the coset space 
SO(m, n)/SO(m) 6~ SO(n). The case Sir[6, n] is the scalar manifold in N = 4 super- 
gravity, while the case S7[2, n] is a very interesting instance of special Kalrler manifold 
appearing in superstring compactifications. Although as differentiable and metric manifolds 
the spaces Sl[m, n] are just direct products of two factors (corresponding to the above- 
mentioned different physical interpretation of the coordinates S and t’), from the point of 
view of the symplectic embedding and duality rotations they have to be regarded as a single 
entity. This is even more evident in the case m = 2, n = arbitrary, where the following 
theorem has been proven by Ferrara and Van Proeyen [48]: S7[2, n] are the only special 
K5hler manifolds with a direct product structure. The definition of special Kahler manifolds 
is given in Section 4, yet the anticipation of this result should make clear that the special 
Kahler structure (encoding the duality rotations in the N = 2 case) is not a property of the 
individual factors but of the product as a whole. Neither factor is by itself a special manifold 
although the product is. 

At this point comes the question of the correct symplectic embedding. Such a question 
has two aspects: 
(1) Intrinsically inequivalent embeddings. 
(2) Symplectically equivalent embeddings that become inequivalent after gauging. 
The first issue in the above list is group-theoretical in nature. When we say that the group 
6 is embedded into Sp(2E, R) we must specify how this is done from the point of view of 
irreducible representations. Group-theoretically the matter is settled by specifying how the 
fundamental representation of Sp(2Tz) splits into irreducible representations of 6, 
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1 

2ii”- Di al 
i=l 

(3.21) 

Once Eq. (3.2 1) is given (in supersymmetric theories such information is provided by super- 
symmetry) the only arbitrariness which is left is that of conjugation by arbitrary Sp(2F’i, R) 
matrices. Suppose we have determined an embedding 18 that obeys the law in Eq. (3.21), 
then: 

VSESp(2~,[W):l~~SoIsoS-’ (3.22) 

will obey the same law. That in Eq. (3.22) is a symplectic transformation that corresponds 
to an allowed duality-rotation/field-redefinition in the abelian theory of type in Eq. (2.5) 
discussed in Section 3. Therefore all abelian Lagrangians related by such transformations 
are physically equivalent. 

The matter changes in presence of gauging. When we switch on the gauge coupling con- 
stant and the electric charges, symplectic transformations cease to yield physically equiv- 
alent theories. This is the second issue in the above list. The choice of a symplectic gauge 
becomes physically significant. The construction of supergravity theories proceeds in two 
steps. In the first step, one constructs the abelian theory: at that level the only relevant 
constraint is that encoded in Eq. (3.21) and the choice of a symplectic gauge is immaterial. 
Actually one can write the entire theory in such a way that symplectic covariance is man- 
ifested. In the second step one gauges the theory. This breaks symplectic covariance and 
the choice of the correct symplectic gauge becomes a physical issue. This issue has been 
recently emphasized by the results in [29] where it has been shown that whether N = 2 
supersymmetry can be spontaneously broken to N = 1 or not depends on the symplectic 
gauge. 

These facts being cleared we proceed to discuss the symplectic embedding of the SI 
[m. n] manifolds. 

Let q be the symmetric flat metric with signature (m, n) that defines the SO(m. n) group, 
via the relation 

L E SO(m,n) * L*qL = 7j (3.23) 

Both in the N = 4 and in the N = 2 theory, the number of gauge fields in the theory is 
given by 

# vector fields = m @ n, (3.24) 

m being the number of graviphotons and n the number of vector multiplets. Hence we have 
to embed SO(m, n) into Sp(2m + 2n, R) and the explicit form of the decomposition in Eq. 
(3.21) required by supersymmetry is 

2r?l+2nS0~),+n@n+n, (3.25) 

where m + n denotes the fundamental representation of SO(m, n). Eq. (3.25) is easily un- 
derstood in physical terms. SO(m, n) must be a T-duality group, namely a symmetry hold- 
ing true order by order in perturbation theory. As such it must rotate electric field strengths 
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into electric field strengths and magnetic field strengths into magnetic field strengths. The 
two irreducible representations into which the fundamental representation of the symplec- 
tic group decomposes when reduced to SO(m, n) correspond precisely to electric and 
magnetic sectors, respectively. In the simplest gauge the symplectic embedding satisfying 
Eq. (3.25) is block-diagonal and takes the form 

VL E SO(m, n) 5 
(L; (Lh) 

E Sp(2m + 2n, R). 

Consider instead the group SV (1, 1) - SL(2, R). This is the factor in the isometry group 
of Sl[m, n] that is going to act by means of S-duality non-perturbative rotations. Typically 
it will rotate each electric field strength into its homologous magnetic one. Correspond- 
ingly supersymmetry implies that its embedding into the symplectic group must satisfy the 
following condition: 

(3.27) 
i=l 

where 2 denotes the fundamental representation of SL(2, R). In addition it must commute 
with the embedding of SO(m, n) in Eq. (3.26). Both conditions are fulfilled by setting 

V E Sp(2m + 2n, R). (3.28) 

Utilizing Eqs. (3.9) the corresponding embeddings into the group Vsp(m + n, m + n) are 
immediately derived: 

VL E SO(m, n) 5 ( i(L + qL&(L - 

i(L - 17Lrl) 

E Usp(m+n,m+n), 

rlLrl) 

;(L + vL77) 

(3.29) 

E SV(1, 1) 5 
Retl+iImtn Rev1 -iImvn 
Revl+iImvr] Retl-iImtq 

E Vsp(m +n,m +n), 

where the relation between the entries of the SV (1, 1) matrix and those of the corresponding 
SL(2, R) matrix are provided by the relation in Eq. (3.10). 

Equipped with these relations we can proceed to derive the explicit form of the period 
matrix N. 

The homogeneous manifold SV (1, l)/ V (1) can be conveniently parametrized in terms of 
a single complex coordinate S, whose physical interpretation will be that of axion-dilaton, 
according to Eq. (3 20). The coset parametrization appropriate for comparison with other 
constructions (special geometry or N = 4 supergravity) is given by the family of matrices 

1 

( 

1 
M(S) = - 

(i - S)/(i + S) 

n(S) (i + 3’)/(i - ‘s) ) 1 ’ 
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n(S)=/:-,:,,,. 

125 

(3.30) 

To parametrize the coset SO(m, n)/SO(m) x SO(n) we can instead take the usual coset 
representatives (see for instance [31]) 

L(X) GE ( (1 + XXT)l/2 X 
XT > (1 + XTX)‘/2 ’ 

(3.3 I ) 

where the m x IZ real matrix X provides a set of independent coordinates. Inserting these 
matrices into the embedding formulae of Eqs. (3.29) we obtain a matrix 

E UspCn+m,n+m) (3.32) 

that when inserted into the master formula of Eq. (3.17) yields the following result: 

N = i ImsnL(X)LT(X)n + Re Sg. (3.33) 

Alternatively, remarking that if L(X) is an SO(m, n) matrix also L(X)’ = qL(X)q is such 
a matrix and represents the same equivalence class, we can rewrite (3.33) in the simpler 
form 

N = i Im.SL(X)‘LT’(X) + Re Sn. (3.34) 

4. Special Kiihler geometry 

The first discovery that the self-interaction of Wess-Zumino multiplets is governed by 
Kahler geometry is due to Zumino [49] Independently, the parametrization of the coupling of 
Wess-Zumino multiplets to supergravity in terms of a real function, later identified with the 
Kahlerpotential, was obtained in [50,5 11, shortly after that supergravity had been discovered 
by Freedman et al. [52] and recast in first-order formalism by Deser and Zumino [53]. 

The complete form of standard N = 1 supergravity, determined by means of the super- 
conformal calculus, was obtained in [54], while the geometric interpretation of the coupling 
structure is due to Bagger and Witten [55,56]. 

Special Kahler geometry in special coordinates was introduced in 1984-85 by Wit et al. 
in [34,57] and Cremmer et al. in [58], where the coupling of N = 2 vector multiplets 
to N = 2 supergravity was fully determined. The more intrinsic definition of special 
Klhler geometry in terms of symplectic bundles is due to Strominger [59], who obtained 
it in connection with the moduli spaces of Calabi-Yau compactifications. The coordinate- 
independent description and derivation of special Kahler geometry in the context of N = 2 
supergravity is due to Castellani et al. [27] and to D’Auria et al. [24]. Recently Ceresole 
et al. [4] have shown how one can and in important instances must dispense of the notion 
of holomorphic prepotential F(X). Let us begin by reviewing the notions of Kahler and 
Hodge-Kalrler manifolds that are the prerequisites to introduce the notion of special Kahler 
manifolds. Once again we do this in order to fix our notations. 
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4.1. Hodge-Kiihler manifolds 

Consider a line bundle Ls M over a Kahler manifold. By definition this is a holomor- 
phic vector bundle of rank r = 1. For such bundles the only available Chem class is the 
first one: 

i - 
cl(L) = $(h-‘ah) = Zj;%logh, 

where the one-component real function h(z, Z) is some hermitian fibre metric on L. Let 
f(z) be a holomorphic section of the line bundle L: noting that under the action of the 
operator 38 the term log(z(Z)c(z)) yields a vanishing contribution, we conclude that the 
formula in Eq. (4.1) for the first Chem class can be re-expressed as follows: 

cl(~) = &3a log 114(z) 11~~ (4.2) 

where (1 c(z) j12= h(z, Z)F(Z)t(z) denotes the norm of the holomorphic section t(z). 
Eq. (4.2) is the starting point for the definition of Hodge-KWer manifolds, an essential 

notion in supergravity theory. 
A Kahler manifold M is a Hodge manifold if and only if there exists a line bundle 

L -+ M such that its first Chem class equals the cohomology class of the K?ihler 2-form 
K 

CI (0 = [Kl. (4.3) 

In local terms this means that there is a holomorphic section W(z) such that we can write 

K = kg,* dz’ A dZj* = -&Ja log I] W(Z) [I2 (4.4) 

Recalling the local expression of the K$hler metric in terms of the KWer potential gij* = 
&+lc(z, t), it follows from Eq. (4.4) that if the manifold M is a Hodge manifold, then the 
exponential of the KWer potential can be interpreted as the metric h(z, Z) = exp(lC(z, Z)) 
on an appropriate line bundle L. 

This structure is precisely that advocated by the Lagrangian of N = 1 matter coupled 
supergravity: the holomorphic section W(z) of the line bundle L is what, in N = 1 super- 
gravity theory, is named the superpotential and the logarithm of its norm log (1 W(z) 112= 
1c(z, Z) + log I W(z)12 = G(z, Z) is precisely the invariant function in terms of which one 
writes the potential and Yukawa coupling terms of the supergravity action (see [54] and for 
a review [3 11). 

4.2. Special Kiihler manifolds: General discussion 

There are in fact two kinds of special K?ihler geometry: the local and the rigid one. 
The former describes the scalar field sector of vector multiplets in N = 2 supergravity 
while the latter describes the same sector in rigid N = 2 Yang-Mills theories. Since 
N = 2 includes N = 1 supersymmetry, local and rigid special Kalrler manifolds must 
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be compatible with the geometric structures that are, respectively, enforced by local and 
rigid N = 1 supersymmetry in the scalar sector. The distinction between the two cases 
deals with the first Chern class of the line bundle CAM, whose sections are the possible 
superpotentials. In the local theory cl (C) = [K] and this restricts M to be a Hodge-Kahler 
manifold. In the rigid theory, instead, we have cl (C) = 0. At the level of the Lagrangian 
this reflects into a different behaviour of the fermion fields. The latter are sections of C’l’ 
and couple to the canonical hermitian connection defined on Cc: 

In the local case where 

[%] = Cl(C) = [K], (4.6) 

the fibre metric h can be identified with the exponential of the K%hler potential and we 
obtain 

H = 3K: = aiIcdr_‘, e = aK: = +K:d$*. (4.7) 

In the rigid case, C is instead a flat bundle and its metric is unrelated to the Kahler potential. 
Actually one can choose a vanishing connection 

e=H=o. (4.8) 

The distinction between rigid and local special manifolds is the N = 2 generalization 
of this difference occurring at the N = 1 level. In the N = 2 case, in addition to the 
line bundle C we need a flat holomorphic vector bundle SV + M whose sections can 
be identified with the superspace fermi-fermi components of electric and magnetic field 
strengths (see Appendix B). In this way, according to the discussion of previous sections 
the diffeomorphisms of the scalar manifolds will be lifted to produce an action on the 
gauge-field strengths as well. In a supersymmetric theory where scalars and gauge fields 
belong to the same multiplet this is a mandatory condition. However, this symplectic bundle 
structure must be made compatible with the line-bundle structure already requested by N = 
1 supersymmetry. This leads to the existence of two kinds of special geometry. Another 
essential distinction between the two kinds of geometries arises from the different number 
of vector fields in the theory. In the rigid case this number equals that of the vector multiplets 
so that 

# vector fields 3 Z = n, 
#vector multiplets = n = dime M 

rankSV 3 2E = 2n. 
(4.9) 

On the other hand, in the local case, in addition to the vector fields arising from the vector 
multiplets we have also the graviphoton coming from the graviton multiplet. Hence we 
conclude: 



128 L. Andrianopoli et al./Journal of Geometry and Physics 23 (1997) Ill-189 

#vectorfields = Z=n+l, 
#vector multiplets 5 n = dimcM, 

rankSV = 27i=2n+2. 
(4.10) 

In the sequel we make extensive use of covariant derivatives with respect to the canonical 
connection of the line bundle L. Let us review its normalization. As it is well known there 
exists a correspondence between line bundles and V (1 )-bundles. If exp[&s (z)] is the tran- 
sition function between two local trivializations of the line bundle C -+ M, the transition 
function in the corresponding principal V (1)-bundle U - M is just exp[i Im fap (z)] and 
the K5hler potentials in two different charts are related by 

At the level of connections this correspondence is formulated by setting 

V(l)-connection = & = Im0 = -$i(e -8). (4.12) 

If we apply the above formula to the case of the V (I)-bundle U + M associated with 
the line bundle ,!Z whose first Chem class equals the Kahler class, we get 

Q = -ii(&K: dz’ - +K: d?‘). (4.13) 

Let now @(z, 2) be a section of UP. By definition its covariant derivative is 

V@ = (d + iPQ)@ (4.14) 

or, in components, 

Vi@ = (aj + ipajlc)@, Vj*@ = (aj* - $pai*lc)@. (4.15) 

A covariantly holomorphic section of U is defined by the equation: Vi*@ = 0. We can 
easily map each section @(z, Z) of UP into a section of the line bundle C by setting 

(4.16) 

With this position we obtain 

Vi5 = (aj + pailc)&, Vi.5 = ails. (4.17) 

Under the map of Eq. (4.16) covariantly holomorphic sections of U flow into holomorphic 
sections of L and vice versa. 

4.3. Special Ktihler manifolds: The local case 

We are now ready to give the definition of local special Kahler manifolds and illustrate 
their properties. A first definition that does not make direct reference to the symplectic 
bundle is the following: 
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Definition 4.1. A Hodge-K5hler manifold is Special KZihler (of the local type) if there 
exists a completely symmetric holomorphic 3-index section Wiik of (T*M)’ 8 C2 (and 
its antiholomorphic conjugate Wi*j*k*) such that the following identity is satisfied by the 
Riemann tensor of the Levi-Civita connection: 

a,,* W;jk = 0, 3, w;* j*k’ = 0, 

V[m Wi]jk = 0, VI, wi*]j*k* = 0, 

RI* j/*k = g/* jgki* f gl*/&ji* - e2’ w;*[*s* wfkjg’*‘. 
(4.18) 

In the above equations V denotes the covariant derivative with respect to both the Levi- 
Civita and the U( 1) holomorphic connection of Eq. (4.13). In the case of W;jk, the U ( I ) 
weight is p = 2. 

The holomorphic sections Wijk have two different physical interpretations in the case 
that the special manifold is utilized as scalar manifold in an N = 1 or N = 2 theory. In the 
first case they correspond to the Yukawa couplings of Fermi families [60]. In the second 
case they provide the coefficients for the anomalous magnetic moments of the gauginos, 
since they appear in the Pauli-terms of the N = 2 effective action. Out of the W;jk we can 
construct covariantly holomorphic sections of weight 2 and -2 by setting 

Cijk = WijkeKc, ci*j.k. = Wi* j*k*e’. (4.19) 

Next we can give the second more intrinsic definition that relies on the notion of the flat 
symplectic bundle. Let L + M denote the complex line bundle whose first Chem class 
equals the Kahler form K of an n-dimensional Hodge-Kahler manifold M. Let SV - M 
denote a holomorphic flat vector bundle of rank 2n + 2 with structural group Sp(2n + 2. iw). 
Consider tensor bundles of the type 3-t = SV @ C. A typical holomorphic section of such 
a bundle will be denoted by 52 and will have the following structure: 

fi= 
X" ( > Fc ’ 

A,C=O,l,..., n (4.20) 

By definition the transition functions between two local trivializations U; c M and Uj c 
M of the bundle l-t have the following form: 

( :fi =eflJMij( t)j. (4.21) 

where fij are holomorphic maps U; flUj --+ @while Mij is aconstant Sp(2n +2, 5%) matrix. 
For a consistent definition of the bundle the transition functions are obviously subject to the 
cocycle condition on a triple overlap, 

,fi,+fik+fkr _ 1 
- 3 MijMjkMki = 1. 

Let i( I ) be the compatible hermitian metric on ‘Ft 

(4.22) 

i(sZ];2) =-ST _1 o ( > O l n. (4.23) 
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Definition 4.2. We say that a Hodge-Kahler manifold M is special Kdhler of the local 
type if there exists a bundle 3-1 of the type described above such that for some section 
Q E r(‘H, M) the K%hler 2-form is given by 

K = &i)iflog(i(RiB, )). (4.24) 

From the point of view of local properties, Eq. (4.24) implies that we have an expression 
for the Kahler potential in terms of the holomorphic section a, 

K = - log(i(Q[Z)) = - log[i(rlnFA - FcXc)] (4.25) 

The relation between the two definitions of special manifolds is obtained by introducing a 
non-holomorphic section of the bundle ti according to 

v= =e K/252 = eW (4.26) 

so that Eq. (4.25) becomes 

1 = i(Vlv) = i(z’Mn - ;i?,L=). (4.27) 

Since V is related to a holomorphic section by Eq. (4.26) it immediately follows that 

Vi*V = (aj* - iai*lC)V = 0. (4.28) 

On the other hand, from Eq. (4.27), defining 

lJi = Vi V = (ai + :ailC)V Z! 

it follows that 

Vi Uj = iCijkgk”U/*, (4.30) 

where Vi denotes the covariant derivative containing both the Levi-Civita connection on the 
bundle ‘TM and the canonical connection 19 on the line bundle L. In Eq. (4.30) the symbol 
Cijk denotes a covariantly holomorphic ( V[* Cijk = 0) section of the bundle ‘TM 3 @ L2 that 
is totally symmetric in its indices. This tensor can be identified with the tensor of Eq. (4.19) 
appearing in Eq. (4.18). Alternatively, the set of differential equations: 

ViV = Ui, 

Vi uj = iCijkgk” u[*, 

Vi*Uj = gi*jV, 

Vi*V = 0 

(4.3 1) 

(4.32) 

(4.33) 

(4.34) 

with V satisfying Eqs. (4.26) and (4.27) give yet another definition of special geometry. This 
is actually what one obtains from the N = 2 solution of Bianchi identities (see Appendix A). 
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In particular it is easy to find Eq. (4.18) as integrability conditions of (4.34). The period 
matrix is now introduced via the relations 

which can be solved introducing the two (n + 1) x (n + 1) vectors 

(4.35) 

(4.36) 

and setting 

Nnz = hnl/ 0 (f-l& (4.37) 

As a consequence of its definition the matrix N transforms, under diffeomorphisms of the 
base Kahler manifold exactly as it is requested by the rule in Eq. (2.38). Indeed this is the 
very reason why the structure of special geometry has been introduced. The existence of 
the symplectic bundle ‘H + M is required in order to be able to pull back the action of 
the diffeomorphisms on the field strengths and to construct the kinetic matrix N. 

From the previous formulae it is easy to derive a set of useful relations among which we 
quote the following [20]: 

IrnNAzL”L 
z 

= -4, (4.38) 

(V, U;) = (V, U;*) = 0, (4.39) 

u*z s ffi”f,.9’j’ = _i(ImN)-‘1°C _ _i’~c, (4.40) 

g;j* = -i(UilUj*) = -2fi”Im NAz$. (4.41) 

Cijk = (viujluk) = fi"aj~~~fkx = (N-~)ncfi"ajfkC. (4.42) 

In particular, Eq. (4.42) express the Klhler metric and the anomalous magnetic moments in 
terms of symplectic invariants. It is clear from our discussion that nowhere we have assumed 
the base Kahler manifold to be a homogeneous space. So, in general, special manifolds are 
not homogeneous spaces. Yet there is a subclass of homogenous special manifolds. The 
homogeneous symmetric ones were classified by Cremmer and Van Proeyen in [61] and 
are displayed in Table 1. It goes without saying that for homogeneous special manifolds the 
two constructions of the period matrix, that provided by the master formula in Eq. (3.17) 
and that given by Eq. (4.37) must agree. In Appendix C we shall briefly verify it in the case 
of the manifolds S7[2, n] that correspond to the second infinite family of homogeneous 
special manifolds displayed in Table 1. 

Anyhow, since special geometry guarantees the existence of a kinetic period matrix with 
the correct covariance property it is evident that to each special manifold we can associate a 
duality covariant bosonic Lagrangian of the type considered in Eq. (2.5). However, special 
geometry contains more structures than just the period matrix N and the scalar metric gij*. 
All the other items of the construction do have a place and play an essential role in the 
supergravity Lagrangian and the supersymmetry transformation rules. 
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Homogeneous symmetric special manifolds 

n GIH Sp(2n + 2) Symp. rep. of G 

1 SU(l,l)/U(l) SP(4) 

n SU(1, n)/SU(n) x U(l) .sp(2n + 2) - _ 

n+l (SLI(l, 1)/U(1)) 8 (SO(2, n)/S0(2) x SO(n)) Sp(2n + 4) 2@@+2fBn+2) 

6 sp(6, @ISU(3) x U(1) SP(l4) 14 

9 SU(3,3)/S(11(3) x U(3)) SPWN 20 

15 SO*(12)/SU(6) x U(1) SP(32) 32 

27 E7(-6)/& x sot21 Sp(56) 56 

4.4. Special Kiihler manifolds: The rigid case 

Let M be a KWer manifold with dim@M = IZ and let C - M be aflat line bundle 
cl(L) = 0. 4 Let SV --+ M denote a holomorphic fiat vector bundle of rank 2n with 
structural group ZSp(2n, R). Consider tensor bundles of the type 3-1 = SV 18 fZ. A typical 
holomorphic section of such a bundle will be denoted by Q and will have the following 
structure: 

Q= Z,J= l,...) n. (4.43) 

By definition the transition functions between two local trivializations Ui c M and Uj c 
M of the bundle ‘Ft have the following form: 

(4.44) 

where fij E @ are purely imaginary complex numbers while Gij denotes the action of an 
element (fi, c) E ZSp(2n, R) on 52. G is a symplectic matrix 2 E Sp(2n, R) and c is a 
n-vector, 

<G c(;)=q;)+(g. (4.45) 

For a consistent definition of the bundle the transition functions are obviously subject to the 
cocycle condition on a triple overlap 

eTi^ii+Zkk+Xi = 1, $jijfijkEki = 1. (4.46) 

Let i( I ) be the compatible hermitian metric on ‘II 

i(sZJZ) E -iQT ( > 0 Qj 
-10 . 

(4.47) 

4 The holomorphic sections of L would be the possible superpotentials if M were used as scalar manifold 
in an N = 1 globally supersymmetric theory. 
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Definition 4.3. We say that a Hodge-Kahler manifold M is special Kiihler of the rigid 
type if there exists a bundle IH of the type described above such that for some section 
5 E r(‘FI. M) the Kahler 2-form is given by 

K = -&as’i(c]s)). (4.48) 

Just as in the local case Eq. (4.48) yields an expression for the Klhler potential in terms of 
the holomorphic section 6, 

K = (i(s]g)) = [i(YIF, -FJY~)]. 

Similarly defining 

(4.49) 

one finds 

Di ~j = iCijkgk”$ I* 7 (4.5 1) 

where D; is the covariant derivative with respect to the Levi-Civita connection on ‘TM 
and where Cijk is a totally symmetric holomorphic section of the bundle IM” @ L2: 
al* Cijk = 0. Just as in the local case we may alternatively define the rigid special geometry 
by the following set of differential equations: 

ai*G =O, (4.52) 

Gi =aiZ, (4.53) 

Di u^. = iCijkgk’*ff 

J I’. (4.54) 

The integrability condition of Eq. (4.54) is similar but different from Eq. (4.18) due to the 
replacement of the covariant derivative on ‘TM x L by that on IM, due to the flatness of 
L. We get 

a,*Cijk = 0, a,Ci*j*k* = 0, 

V[rnCiljk = 0, v[,ci*]j*k* = 0, 
R,*jl*k = -Ci*[*S*Cfkj&‘S*t, 

(4.55) 

which are the rigid counterparts of (4.18). The definition of the period matrix is obtained 
in full analogy to Eq. (4.35) 

htli = %.I#, (4.56) 

that yields 

X,_/ = htli o (f-l)). (4.57) 

Finally we observe that, exactly as in the local case, the metric and the magnetic moments 
can be expressed in terms of the symplectic sections 

gij* = -i(CilEj*), Cijk = (&t?j[ck). (4.58) 
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4.5. Special Kiihler manifolds: The issue of special coordinates 

So far no privileged coordinate system has been chosen on the base K&hler manifold M 
and no mention has been made of the holomorphic prepotential F(X) that is ubiquitous 
in the N = 2 literature. The simultaneous avoidance of privileged coordinates and of the 
prepotential is not accidental. Indeed, when the definition of special K%hler manifolds is 
given in intrinsic terms, as we did in Section 4.4, the holomorphic prepotential F(X) can 
be dispensed with. Whether a prepotential F(X) exists or not depends on the choice of 
a symplectic gauge which is immaterial in the abelian theory but not in the gauged one. 
Actually, in the local case, it appears that some physically interesting cases are precisely 
instances where F(X) does not exist. On the contrary the prepotential F(X) seems to 
be a necessary ingredient in the tensor calculus constructions of N = 2 theories that for 
this reason are not completely general. This happens because tensor calculus uses special 
coordinates from the very start. Let us then see how the notion of F(X) emerges if we resort 
to special coordinate systems. 

Note that under a K;ihler transformation K -+ K: + f(z) + f(Z) the holomorphic section 
transforms, in the local case, as Q += Re-f, so that we have X” -+ X”e-f. This means 
that, at least locally, the upper half of 52 (associated with the electric field strengths) can be 
regarded as a set X” of homogeneous coordinates on M, provided that the jacobian matrix 

e!(z) = a; X’ c > y6 ’ a= l,...,n, (4.59) 

is invertible. In this case, for the lower part of the symplectic section Q we obtain FA = 
FA (X). Recalling Eqs. (4.39), in particular 

O= (VlUi) = X”&FA -&X”FA, (4.60) 

we obtain 

x=&d-~(x) = FA(~), 

so that we can conclude 

FA(~) = &F(X) 

(4.61) 

(4.62) 

where F(X) is a homogeneous function of degree 2 of the homogeneous coordinates X”. 
Therefore, when the determinant of the Jacobian (4.59) is non-vanishing, we can use the 
special coordinates 

X' tI f - 
X0 

(4.63) 

and the whole geometric structure can be derived by a single holomorphic prepotential 

F(t) = (xyF(x>. (4.64) 
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In particular, Eq. (4.25) for the Klhler potential becomes 

Ic(t, i) = - logi[2(3 - F’> - (81-T + a,*F)(t’ - ?‘*)I, (4.65) 

while Eq. (4.42) for the magnetic moments simplifies into 

WIJK = &aJaKm. (4.66) 

Finally we note that in the rigid case the Jacobian from a generic parametrization to special 
coordinates 

(4.67) 

cannot have zero eingenvalues, and therefore the function F always exists. In this case the 
matrix;i7coincides with a2F/aX’aXJ. 

5. Hypergeometry 

Next we turn to the hypermultiplet sector of an N = 2 theory. Here there are four real 
scalar fields for each hypermultiplet and, at least locally, they can be regarded as the four 
components of a quaternion. The locality caveat is, in this case, very substantial because 
global quatemionic coordinates can be constructed only occasionally even on those man- 
ifolds that are denominated quatemionic in the mathematical literature [23,62]. Anyhow, 
what is important is that, in the hypermultiplet sector, the scalar manifold ‘FIM has dimen- 
sion multiple of 4, 

dimRtiM = 4m 3 4# of hypermultiplets (5.1) 

and, in some appropriate sense, it has a quatemionic structure. 
As special Kiihler is the collective name given to the vector multiplet geometry both in 

the rigid and in the local case, in the same way we name Hypergeometry that pertaining 
to the hypermultiplet sector, irrespectively whether we deal with global or local N = 2 
theories. Yet in the very same way as there are two kinds of special geometries, there are 
also two kinds of hypergeometries and for a very similar reason. Supersymmetry requires 
the existence of a principal SU(2)-bundle 

SU-‘HM (5.2) 

that plays for hypermultiplets the same role played by the line bundle C + SM in the 
case of vector multiplets. As it happens there the bundle SZ4 is jut in the rigid case while 
its curvature is proportional to the Klhler forms in the local case. 

The difference with the case of vector multiplets is that rigid and local hypergeometries 
were already known in mathematics prior to their use [26,63-65] in the context of N = 2 
supersymmetry and had the following names: 

Rigid hypergeometry = hyperKiihler geom. 
Local hypergeometry = quatemionic geom. 

(5.3) 
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5.1. Quaternionic versus hyperKiihler manifolds 

Both a quatemionic or a hyperKWer manifold ‘HM is a 4m-dimensional real manifold 
endowed with a metric h, 

ds2=h,,(q)dqu@ dq”; u,u= 1,...,4m (5.4) 

and three complex structures 

(Jx) : T(IFIM) --+ T(‘FIM) (x = 1,2,3) (5.5) 

that satisfy the quaternionic algebra 

J*JY = -fYl + @‘z J' (5.6) 

and with respect to which the metric is hermitian: 

VX, Y E TI’-tM, h(JXX, J’Y) = h(X, Y) (x = 1,2,3). (5.7) 

From Eq. (5.7) it follows that one can introduce a triplet of 2-forms 

KX = K,X, dq’ A dq’, K,“, = h,,(JX); (5.8) 

that provides the generalization of the concept of K8hler form occurring in the complex case. 
The triplet KX is named the hyperKdhler form. It is an SU(2) Lie-algebra valued 2-form in 
the same way as the Kahler form is a U ( 1) Lie-algebra valued 2-form. In the complex case 
the definition of K;ihler manifold involves the statement that the K%hler 2-form is closed. At 
the same time in Hodge-KMer manifolds (those appropriate to local supersymmetry) the 
KWer 2-form can be identified with the curvature of a line bundle which in the case of rigid 
supersymmetry is flat. Similar steps can be taken here also and lead to two possibilities: 
either hyperKal-Jer or quatemionic manifolds. 

Let us introduce a principal SU(2)-bundle SZ.4 as defined in Eq. (5.2). Let ox denote a 
connection on such a bundle. To obtain either a hyperKahler or a quatemionic manifold we 
must impose the condition that the hyperK&hler 2-form is covariantly closed with respect 
to the connection wX 

VKX E dKX _t •~y~,y A KZ = 0. (5.9) 

The only difference between the two kinds of geometries resides in the structure of the 
SU-bundle. 

Definition 5.1. A hyperKahler manifold is a 4mdimensional manifold with the structure 
described above and such that the SZA-bundle isjat. 

Defining the SU-curvature by 

(5.10) 
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in the hyperK6hler case we have 

RX =o (5.11) 

and vice versa. 

Definition 5.2. A quatemionic manifold is a 4m-dimensional manifold with the structure 
described above and such that the curvature of the SU-bundle is proportional to the hy- 
perKahler 2-form. 

Hence, in the quatemionic case we can write 

fix = hKX (5.12) 

where h is a non-vanishing real number. 
As a consequence of the above structure the manifold 7-tM has a holonomy group of the 

following type: 

Hol(‘7fM) = SU(2) @ ‘FI (quatemionic), 
Hol(‘BM) = 163 ‘Ft (hyperKPhler), 

3-1 c Sp(2m, R). 
(5.13) 

In both cases, introducing flat indices (A, B, C = 1,2}((r, B, y = 1, . . . ,2m) that run, 
respectively, in the fundamental representations of SU(2) and Sp(2m, R), we can find a 
vielbein 1 -form 

UACY = U$ (q) dq” 

such that 

(5.14) 

h =UA”UBpC E uu u ” c@ ABT (5.15) 

where C,B = --CP~ and EAB = --EEA are, respectively, the flat Sp(2m) and sp(2) - 
SU(2) invariant metrics. The vielbein U Aa is covariantly closed with respect to the SU(2)- 
connection wz and to some Sp(2m, R) Lie-algebra valued connection A@ = A@: 

VUA” = dUAa + ~io’(~a,E-‘)$ AURA + A‘@ r\UAYCp, = 0, (5.16) 

where (ax)f: are the standard Pauli matrices. FurthermoreUAa satisfies the reality condition 

UAa = (UAa)* = EA&_+UBB. (5.17) 

Eq. (5.17) defines the rule to lower the symplectic indices by means of the flat symplectic 
metrics CAB and C,b. More specifically we can write a stronger version of Eq. (5.15) 1561: 

(Z.4,“*U,fB + U,A”U,B+t& = huucAB, 

(U,““Uf’ + U;“U,B’),,B = h,, $‘@. 
(5.18) 

We have also the inverse vielbein l/i, defined by the equation 

U” UA’Y = 6U Aa u “’ (5.19) 
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Flattening a pair of indices of the Riemann tensor R,U, we obtain 

7$Y4~AZ4~B = -~iQ~EAC(aX)~C”B + R$eAB, 

where k$!! is the field strength of the Sp(2m) connection 

dA‘@ + day A A@$,~ E R‘@ = rW;g dq’ A dqs. 

(5.20) 

(5.21) 

Eq. (5.20) is the explicit statement that the Levi-Civita connection associated with the metric 
h has a holonomy group contained in SU(2) @ Sp(2m). Consider now Eqs. (5.6) (5.8) and 
(5.12). We easily deduce the following relation: 

h” K,:, Kry, = -cSXYhU,,, + cxyz K;, (5.22) 

that holds true both in the hyperKahler and in the quaternionic case. In the latter case, using 
Eqs. (5.12), (5.22) can be rewritten as follows: 

h%‘~,$,Y, = -h26xyh,, + kXYZi&,. (5.23) 

Eq. (5.23) implies that the intrinsic components of the curvature 2-form Qnx yield a represen- 
tation of the quatemion algebra. In the hyperK%hler case such a representation is provided 
only by the hyperKi&ler form. In the quatemionic case we can write 

fiicu& = fl,“,i!&$&r = -ih@U~(OX)~ecB. (5.24) 

Alternatively, Eq. (5.24) can be rewritten in an intrinsic form as 

whence we also get 

Homogeneous symmetric quatemionic spaces are displayed in Table 2. 

Table 2 
Homogeneous symmetric quatemionic manifolds 

(5.25) 

(5.26) 

m GIH 

m Sp(2m + 2)/Sp(2) x SP(2m) 

m SlJ(m, 2)/SU(m) x SU(2) x U(1) 

in SO(4, m)/S0(4) x SO(m) 

2 Gz/W4) 

7 F~ISP(~) x SP(~) 

10 E6/SU(6) x U(1) 

16 E7/SO(l2) x SU(2) 

28 EalE7 x SU(2) 
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6. The Gauging 

With the above discussion of hyperKahler and quaternionic manifolds we have completed 
the review of the geometric structures involved in the construction of an abelian, ungauged 
N = 2 supergravity or of an abelian N = 2 rigid gauge theory. As we are going to see 
in Section 8, the bosonic Lagrangian of N = 2 supergravity coupled to n abelian vector 
multiplets and m hypermultiplets is the following: 

~;;~;;$n”“’ =fi[R[gl+ ~ij*(Z9Z)apZ'3pZj* -hh,,(q)8'"q"apq" 

+ i(X4~_F;~F”“*” - NnzF~,?.F+“““)], (6.1) 

where the n complex fields zi span some special Kiihler manifold of the local type SM and 
the 4m real fields q” span a quaternionic manifold ?-tM. By gij* and h,, we have denoted the 
metrics on these two manifolds. The proportionality constant between the SU(2) curvature 
and the hyperK?ihler form appearing in the Lagrangian is fixed to the value h = - 1 if 
we want canonical kinetic terms for the hypermultiplet scalars. The period matrix ,,%r,q~ 
depends only on the special manifold coordinates z’, Tj* and it is expressed in terms of 
the symplectic sections of the flat symplectic bundle by Eq. (4.37). On the other hand the 
bosonic Lagrangian of a rigid N = 2 abelian gauge theory containing n vector multiplets 
and coupled to m hypermultiplets is the following one: 

CYMIBose 
ungauged =~ij*(~,i)~‘~‘~p~j* + h,“(q)8’qN8,q” 

+ i(fl~J.F$FPJiP’” - N,J.FT+‘F’Ji’*“). /II’ (6.2) 
where the n complex fields zi span some special Ktihler manifold of the rigid t]vpe SM 
and the 4m real fields q” span a hyperKIhler manifold ‘HM. By gij* and h,, we have 
denoted the metrics on these two manifolds. The period matrix n/l., depends only on the 
special manifold coordinates z’ , zj’ and it is expressed in terms of the symplectic sections 
of the flat symplectic bundle by Eq. (4.57). In both theories there are no electric or magnetic 
currents and we have on-shell symplectic covariance. By means of the first homomorphism 
in Eq. (2.33) any diffeomorphism of the scalar manifold can be lifted to a symplectic 
transformation on the electric-magnetic field strengths, the period matrix transforming, by 
construction, covariantly as required by Eq. (2.38). Under this lifting any isometry of the 
scalar manifold becomes a symmetry of the differential system made by the equations of 
motions plus Bianchi identities. There are in fact three types of these isometries: 
( 1) The classical symmetries, namely those isometries t E Z( M scalar) whose image in the 

symplectic group is block-diagonal: 

(5.3) 

These transformations are exact ordinary symmetries of the Lagrangian. They clearly 
form a subgroup 

Cla.y(M,,,),,) c T(M,,,I~,). (6.4) 



140 L. Andrianopoli et al./Journal of Geometry and Physics 23 (1997) III-189 

(2) 

(3) 

The perturbative symmetries, namely those isometries { E Z(Mscalx) whose image in 
the symplectic group is lower triangular: 

(6.5) 

These transformations map the electric field strengths into linear combinations of the 
electric field strengths and can be reduced to linear transformations of the gauge poten- 
tials. They are almost invariances of the action. Indeed the only non-invariance comes 
from the transformation of the period matrix 

N --+ (A;)-‘N(A# + CE(A;)-‘. (6.6) 

Denoting collectively all the fields of the theory by @ and utilizing Eqs. (2.5), (2.8) 
(2. lo), (2.11) and (2.38), under a perturbative transformation the action changes as 
follows: 

s 
C(0) d4X -+ 

s 
C(@‘) d4x + AOAz. F” A FE, 

(6.7) 
A0n.z = ;[C+;)-llnc. 

s 

The added term is a total derivative and does not affect the field equations. Quan- 
tum mechanically, however, it is relevant. It corresponds to a redefinition of the theta- 
angle. It yields a symmetry of the path-integral as long as the added term is an integer 
multiple of 2nA. This consideration will restrict the possible perturbative transforma- 
tions to a discrete subgroup. In any case the group of perturbative isometries defined 
by Eq. (6.5) contains the group of classical isometries as a subgroup: Z(Mscalar) I 

pert (M,,,l,) 1 C@Mscalar). 
The non-perturbative symmetries namely those isometries .$ E Z(Mscalar) whose image 
in the symplectic group is of the form 

(6.8) 

with Bg # 0. These transformations are neither a symmetry of the classical action nor 
of the perturbative path integral. Yet they are a symmetry of the quantum theory. They 
exchange electric field strengths with magnetic ones, electric currents with magnetic 
ones and hence elementary excitations with soliton states. 

The above discussion of duality symmetries may be intriguing for the following reason. 
How can we talk about non-perturbative symmetries that exchange electric charges with 
magnetic charges if, so far, in the abelian theories described by Eqs. (6.1) and (6.2) there 
are neither electric nor magnetic couplings? The answer is that the same general form of 
abelian theories encoded in these equations can be taken to represent two quite different 
things: 
(1) The fundamental theory prior to the gauging. It is neutral and abelian since the non- 

abelian interactions and the electric charges are introduced only by the gauging, but it 
contains all the fundamental fields. 
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(2) The effective theory of the massless modes of the non-abelian theory. It is abelian and 
neutral because the only fields which remain massless are, apart from the graviton, 
the multiplets in the Cat-tan subalgebra X c G of the gauge group and the neutral 
hypermultiplets corresponding to flat directions of the scalar potential. 

What distinguishes the two cases is the type of scalar manifolds and their isometries. 
In case (1) we have: 

dimcSM = n = dimG, 
$dirnRXM = m^ = #of all hypermul. 

while in case (2) we have instead: 

(6.9) 

dime SM = r = rank 6, 
idirnR8’FIM = m = #of moduli hypermul. 

(6.10) 

As far as the gauging of the N = 2 theory is concerned, the problem consists in identifying 
the gauge group G as a subgroup, at most of dimension n + 1 of the isometries of the product 
space 

SMx’HM. (6.1 1) 

Here we shall mainly consider two cases even if more general situations are possible. 
The first is when the gauge group G is non-abelian, the second is when it is the abelian 
group G = (I( l)nv+‘. In the first case supersymmetry requires that G be a subgroup of 
the isometries of M, since the scalars (more precisely, the sections LA) must belong to the 
adjoint representation of G. In such a case the hypermultiplet space will generically split 
into 1351 

nH = c 
i 

niRi + i CnPR,‘, 
I 

(6.12) 

where Ri and RIP are a set of irreducible representations of G and RrP denote pseudoreal 
representations. 

In the abelian case, the special manifold is not required to have any isometry and if the 
hypermultiplets are charged with respect to the nv + 1 U (1)‘s then the Q manifold should 
at least have nv + 1 abelian isometries. 

As a consequence of gauging the Lagrangians in Eqs. (6.1) and (6.2) get modified by the 
replacement of ordinary derivatives with covariant derivatives and by the introduction of 
new terms that are of two types: 
(1) Fermion-fermion bilinears with scalar field dependent coefficients. 
(2) A scalar potential V. 
It is particularly nice and rewarding that all the modifications of the Lagrangian and of the 
supersymmetry transformation rules can be described in terms of a very general geometric 
construction associated with the action of Lie groups on manifolds that admit a symplectic 
structure: the momentum map. In supersymmetry indeed, the geometric notion of momentum 
map has an exact correspondence with the notion of gauge multiplet auxiliary fields or 
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D-jields. Section 7 is devoted to a review of the momentum map and to its applications in 
N = 2 theories. 

7. The momentum map 

The momentum map is a construction that applies to all manifolds with a symplectic 
structure, in particular to Kahler, hyperK6hler and quatemionic manifolds. 

Let us begin with the Klhler case, namely with the momentum map of holomorphic 
isometries. The hyperK%hler and quaternionic case correspond, instead, to the momentum 
map of triholomorphic isometries. 

7.1. Holomorphic momentum map on Kiihler manifolds 

Let gij* be the Kahler metric of a K%hler manifold M: it appears in the kinetic term of 
the scalar fields: the Wess-Zumino multiplet scalars in N = 1 theories, the vector multiplet 
scalars in N = 2 theories. If the metric gij* has a non-trivial group of continuous isometries 
6 generated by Killing vectors k> (A = 1, . . , dimG), then the kinetic Lagrangian admits 
G as a group of global space-time symmetries. Indeed under an infinitesimal variation 

zi + zi + c*k’ (z) A ’ (7.1) 

.&in remains invariant. Furthermore if all the couplings of the scalar fields are performed in 
a diffeomorphic invariant way, then any isometry of gij* extends from a symmetry of Cl& 
to a symmetry of the whole Lagrangian. Diffeomorphic invariance means that the scalar 
fields can appear only through the metric, the Christoffel symbol in the covariant derivative 
and through the curvature. Alternatively they can appear through sections of vector bundles 
constructed over M. Typical case is the dependence on the scalar fields introduced by the 
period matrix N. 

Let k> (z) be a basis of holomorphic Killing vectors for the metric gij*. Holomorphicity 
means the following differential constraint: 

+k>(z) = 0 * ajkz(2) = 0, (7.2) 

while the generic Killing equation (suppressing the gauge index A) 

V,k” + V,k, = 0 (7.3) 

in holomorphic indices reads as follows: 

Vikj + Vjki = 0, Vi*kj + Vjki* = 0, (7.4) 

where the covariant components are defined as kj = gji*k’* (and similarly for ki*). 
The vectors k; are generators of infinitesimal holomorphic coordinate transformations 

szi = @ki (z) A ’ (7.5) 
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which leave the metric invariant. In the same way as the metric is the derivative of a more 
fundamental object, the Killing vectors in a KHhler manifold are the derivatives of suitable 
prepotentials. Indeed the first of Eqs. (7.4) is automatically satisfied by holomorphic vectors 
and the second equation reduces to the following one: 

k> = ig’j’aj*P,, Pi = Q,. (7.6) 

In other words if we can find a real function Qn such that the expression $j*aj*P(,, is 
holomorphic, then Eq. (7.6) defines a Killing vector. 

The construction of the Killing prepotential can be stated in a more precise geometrical 
formulation which involves the notion of momentum map. Let us review this construction 
which reveals another deep connection between supersymmetry and geometry. 

Consider a Kahlerian manifold M of real dimension 2n. Consider a compact Lie group 
G acting on M by means of Killing vector fields X which are holomorphic with respect 
the complex structure J of M; then these vector fields preserve also the Klhler 2-form 

to 

cxg = 0 ff V(,X”) = 0 
CxJ=O 1 + 0 = CxK = ixdK + d(ixK) = d(ixK). 

(7.7) 

Here Cx and ix denote, respectively, the Lie derivative along the vector field X and the 
contraction (of forms) with it. 

If M is simply connected, d(ix K) = 0 implies the existence of a function PX such that 

-& dPx = ixK. (7.8) 

The function Px is defined up to a constant, which can be arranged so as to make it 
equivariant, 

XPY = QKYI. (7.9) 

PX constitutes then a momentum map. This can be regarded as a map 

P:M-+R@~*, (7.10) 

where G* denotes the dual of the Lie algebra G of the group G. Indeed let x E G be the Lie 
algebra element corresponding to the Killing vector X; then, for a given m E M 

p(m) : x -+ Px(m) E R (7.1 I) 

is a linear functional on G. If we expand X = a”kn in a basis of Killing vectors kn such 
that 

[kn, krl = f;idrh, (7.12) 

we also have 

PX = a”P,. (7.13) 



144 L. Andrianopoli et al. /Journal of Geometry and Physics 23 (1997) I1 I-189 

In the following we use the shorthand notation CA, iA for the Lie derivative and the con- 
traction along the chosen basis of Killing vectors kn. 

From a geometrical point of view the prepotential, or momentum map, PA is the 
Hamiltonian function providing the Poissonian realization of the Lie algebra on the Kahler 
manifold. This is just another way of stating the already mentioned equivuriance. Indeed 
the very existence of the closed 2-form K guarantees that every KMer space is a symplectic 
manifold and that we can define a Poisson bracket. 

Consider Eqs. (7.6). To every generator of the abstract Lie algebra G we have associated 
a function PA on M; the Poisson bracket of PA with P, is defined as follows: 

{PA, PC] = 4nK(A, x), (7.14) 

where K (A, Z) s K (kA, kz) is the value of K along the pair of Killing vectors. 
In [24] we proved the following lemma. 

Lemma 7.1. The following identity is true: 

IpA, PC) = &pi- + CA.E, 

where Cnc is a constant fidjilling the cocycle condition 

(7.15) 

f&rcr,E + f;&-A + f&-n = ‘. (7.16) 

If the Lie algebra G has a trivial second cohomology group H2 (G) = 0, then the cocycle 
CA= is a coboundary; namely we have 

CM = f‘$&-? (7.17) 

where Cr are suitable constants. Hence, assuming H*(S) = 0 we can reabsorb Cr in the 
definition of PA, 

PA-+ PA-+-CA (7.18) 

and we obtain the stronger equation 

(PA, PZ) = f&pi-. (7.19) 

Note that H2(G) = 0 is true for all semi-simple Lie algebras. Using Eqs. (7.13, (7.19) can 
be rewritten in components as follows: 

(7.20) 

Eq. (7.20) is identical with the equivariance condition in Eq. (7.9). 
Comparing the definition of the Kahler potential in Eq. (D. 17) with the definition of the 

momentum function in Eq. (7.6), we obtain an expression for the momentum map function 
in terms of derivatives of the Kahler potential 

iPA = i(kLijiK - k2ai.K) = kf,,&K = -k:apK. (7.21) 
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Eq. (7.21) is true if the K5hler potential is exactly invariant under the transformations of 
the isometry group G and not only up to a Kahler transformation as defined in Eq. (D. 18). 
In other words Eq. (7.21) is true if 

0 = C”K: = k’,&K: + k’,*+;lc. (7.22) 

Not all the isometries of a general Kahler manifold have such a property, but those that, in a 
suitable coordinate frame, display a linear action on the coordinates certainly do. However, 
in Hodge-Kahler manifolds, Eq. (7.22) can be replaced by the following one which is 
certainly true: 

0 = C”G = kk&G + kz&G, 

G(z, 7) = log II W(z) II*= Uz. Z) + Re W(z), 
(7.23) 

where the superpotential W(z) is any holomorphic section of the Hodge line bundle. In- 
deed the transformation under the isometry of the Klhler potential is compensated by the 
transformation of the superpotential. Consequently, in Hodge-Kahler manifolds equation 
(7.21) can be rewritten as 

i’PA = $(k>&G - kz&*G) = k>aiG = -k’,‘+G 

and holds true for any isometry. 

(7.24) 

In N = 1 supersymmetry the Klhlerian momentum maps Pr appear as auxiliary fields 
of the vector multiplets. For N = 1 supergravity the scalar manifold is of the Hodge type 
and Eq. (7.24) can always be employed. 

On the other hand, in N = 2 supersymmetry the auxiliary fields of the vector multiplets, 
that form an SU (2) triplet, are given by the momentum map of triholomorphic isometries on 
the hypermultiplet manifold (hyperKkihlerian or quatemionic depending on the local or rigid 
nature of supersymmetry). The triholomorphic momentum map is discussed in Section 7.3. 
Yet, although not identified with the auxiliary fields, the holomorphic momentum map plays 
a role also in N = 2 theories in the gauging of the U (1) connection (4.13) as we show 
shortly from now. 

7.2. Holomorphic momentum map on special Kiihler manifolds 

Here the Kahler manifold is not only Hodge but it is special. Correspondingly we can 
write a formula for PA in terms of symplectic invariants. In this context, to distinguish 
the holomorphic momentum map from the triholomorphic one P: that carries an SU(2) 
index x = 1,2, 3, we adopt the notation Pi. The request that the isometry group should be 
embedded into the symplectic group is formulated by writing 

&nV = k>&V +kx&*V = TAV + Vf,q(z), (7.25) 

where V is the covariantly holomorphic section of the vector bundle IFI - M defined in 
Eq. (4.27), 

TA = (;: 3 ESp(2n+2.[W) (7.26) 
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is some element of the real symplectic Lie algebra and f4 (z) corresponds to an infinitesimal 
KWer transformation. 

The classical or perturbative isometries (bn = 0) that are relevant to the gauging proce- 
dure are normally characterized by 

fA(Z) = 0. (7.27) 

Under condition (7.27), recalling Eqs. (4.25) and (4.26), from Eq. (7.25) we obtain 

C”K: = k:,&K + k;+K = 0, (7.28) 

that is identical with Eq. (7.22). Hence we can use Eq. (7.21), that we rewrite as 

iPi = kf,,i3;K = -kz+K. (7.29) 

Utilizing the definition in Eq. (4.29) we easily obtain 

k> U’ = TA V exp[fA (z)] + iPi V. (7.30) 

Taking the symplectic scalar product of Eq. (7.30) with v and recalling Eq. (4.27) we 
finally 5 get 

P; = (~ITAV) = (V(TAV) = exp[K](nlTAfi). (7.31) 

In the gauging procedure we are interested in groups the symplectic image of whose gener- 
ators is block-diagonal and coincides with the adjoint representation in each block. Namely 

TA = ‘{_* 
f 

t ) 
AA 

Then Eq. (7.31) becomes 

(7.32) 

(7.33) 

7.3. The triholomorphic momentum map on hyperKtihler and quaternionic manifolds 

Next we turn to a discussion of isometries of the manifold I-tM associated with hyper- 
multiplets. As we know, it can be either hyperKahlerian or quaternionic. For applications 
to N = 2 theories we must assume that on ?iM we have an action by triholomorphic 
isometries of the same Lie group 6 that acts on the special Kahler manifold SM. This 
means that on ‘FtM we have Killing vectors 

kn=k>-$ (7.34) 

satisfying the same Lie algebra as the corresponding Killing vectors on SM. In other words 

Z4 = k>ai + kzai* + kl;8, (7.35) 

5 The following and the next two formulae have been obtained in private discussions of one of us (P, Fri) 
with A. Van Proeyen and B. de Wit. 
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is a Killing vector of the block-diagonal metric 

(7.36) 

defined on the product manifold SM @ ‘FtM. Triholomorphicity means that the Killing 
vector fields leave the hyperK$hler structure invariant up to SU (2) rotations in the SU(2)- 
bundle defined by Eq. (5.2). Namely 

L 
A 

KX = cxYzK”Wz 
A 3 LCntd = VW& (7.37) 

where Wi is an SU (2) compensator associated with the Killing vector k;. The compensator 
Wi necessarily fulfils the cocycle condition 

L~W~-L~W~+~x’zW);w~ = f;;gW;. (7.38) 

In the hyperKahler case the SU(2)-bundle is flat and the compensator can be reabsorbed 
into the definition of the hyperKIhler forms. In other words we can always find a map 

‘FtM - L;(q) E SO(3) (7.39) 

that trivializes the SU-bundle globally. Redefining 

KX’ = L;(q)K’, (7.40) 

the new hyperKIhler form obeys the stronger equation 

LA Kx’ = 0. (7.41) 

On the other hand, in the quatemionic case, the non-triviality of the &Y-bundle forbids to 
eliminate the W-compensator completely. Due to the identification between hyperK5hler 
forms and SU(2) curvatures Eq. (7.37) is rewritten as 

LniY = ExYzf2J’W; ) LA09 = VW;. (7.42) 

In both cases, anyhow, and in full analogy with the case of K%hler manifolds, to each Killing 
vector we can associate a triplet P$ (q) of O-form prepotentials. Indeed we can set 

inK.’ = -VP: s -(dPi + •~f~&‘Pi), (7.43) 

where V denotes the SU (2) covariant exterior derivative. 
As in the K5hler case Eq. (7.43) defines a momentum map 

P:M + R3@G*, (7.44) 

where G* denotes the dual of the Lie algebra G of the group 6. Indeed let x E G be the Lie 
algebra element corresponding to the Killing vector X; then, for a given m E M 

k(m) : x -+ Px(m) E R3 (7.45) 
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is a linear functional on G. If we expand X = a” kn on a basis of Killing vectors kn such 
that 

[k/t, krl = f&b (7.46) 

and we also choose a basis i, (x = 1,2,3) for R3 we get 

Px = a”P);i,. (7.47) 

Furthermore we need a generalization of the equivariance defined by Eq. (7.9) 

X 0 PY = P[X,Y]. (7.48) 

In the hyperKahler case, the left-hand side of Eq. (7.48) is defined as the usual action of a 
vector field on a O-form, 

XoPy=ixdPr=T?$Py. (7.49) 

The equivariance condition implies that we can introduce a triholomorphic Poisson bracket 
defined as follows: 

{PA, PclX = 2KX(A, Z) (7.50) 

leading to the triholomorphic Poissonian realization of the Lie algebra 

(7.51) 

which in components reads 

K,x,k>k; = $ f&Pi. (7.52) 

In the quaternionic case, instead, the left-hand side of Eq. (7.48) is interpreted as follows: 

X 0 Py = ixVPy = X’V,Py, (7.53) 

where V is the SU(2)-covariant differential. Correspondingly, the triholomorphic Poisson 
bracket is defined as follows: 

{PA, PC)” = 2KX(A, Z) - AsxY”P;P; (7.54) 

and leads to the Poissonian realization of the Lie algebra 

{PA, PCY = f&P;, (7.55) 

which in components reads 

K,x,k;k; - ;hXYZP;P; = $ ffizPi. (7.56) 

Eq. (7.56), which is the most convenient way of expressing equivariance in a coordinate 
basis, plays a fundamental role in the construction of the supersymmetric action, supersym- 
metry transformation rules and of the superpotential for N = 2 supergravity on a general 
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quaternionic manifold. It is also very convenient to retrieve the rigid supersymmetry limit. 
Indeed, using physical units, we may set h = x/w2 where p is the Planck mass (see 
Section 9); letting p -+ 00, Eq. (7.56) reduces to Eq. (7.52). Eq. (7.56) was introduced in 
the physical literature in [24] where the general form of N = 2 supergravity beyond the 
limitations of tensor calculus was given. 

7.4. Gauging of the composite connections 

Using the concepts and the geometric structures introduced in the previous sections the 
form of the Lagrangian and of the transformation rules for N = 2 supergravity can now be 
given. The essential thing is that the fermions of the theory behave as sections of the bundles 
we have introduced so far. In particular the gravitino field +,$ apart from being a spinor- 
valued 1 -form on space-time behaves as a section of the bundle L @J SU. The gaugino field 
k’iA apart from being a section of the spinor bundle behaves as a section of C @‘TSM @I SU. 
Finally the hyperino field {” is a section of the rank 2m vector bundle with structural group 
Sp(2m, R) that one obtains by deleting the SU (2) part of the holonomy group on ‘HM. In 
other words it is a section of the bundle ‘T7fM $3 SK’. Correspondingly the covariant 
derivatives of the fermions appearing in the action and in the transformation rules involves 
the composite connections Q , Fj, co’ and A Up defined on these bundles. Gauging just 
modifies these composite connections by means of Killing vectors and momentum map 
functions. Explicitly we have: 

TSM tangent bundle r> + rj = I-; + gA”ajki. 

c line bundle Q + Q= Q+gA”P;, 
SU SU(2) bundle wx + ZY’ = o.? + gA”Pi, 

(7.57) 

SW’ @ ItiM Sp(2m) bundle A@ --+ ps = A‘@ -t gAA&k~U”‘aAU~A, 

Correspondingly the gauged curvatures are: 

Fj = Rj,.kV$’ A Vzk + gF”ajki, 

K^ = Kij*V?’ A VZ” + gF”Pi, 
6.’ = Q;,Vq* A Vq’ + gF”P;, 

fJ%@ = lR;fVq” A Vq’ + gA”i3,kl;U”~~AU,$A. 

(7.58) 

8. The complete N = 2 supergravity theory 

In this section we write the supersymmetric invariant action and supersymmetry trans- 
formation rules for a completely general N = 2 supergravity. 

Such a theory includes: 
(1) The gravitational multiplet, described by the vielbein l-form Vu (a = 0. 1, 2, 3). the 

spin-connection 1 -form w ab, the SU (2) doublet of gravitino 1 -forms I+?~, ?+kA (A = 1, 2 
and the upper or lower position of the index denotes left, respectively right chirality), 
the graviphoton l-form A’. 
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(2) n vector multiplets. Each vector multiplet contains a gauge boson l-form A’ (I = 
1 .., n), a doublet of gauginos (O-form spinors) kiA, h.2, and a complex scalar field 
(d-form)zi (i = l,..., n). The scalar fields zi can be regarded as coordinates on a 
special manifold SM which can be chosen arbitrarily. 

dim&M = n. (8.1) 

(3) m hypermultiplets. Each hypermultiplet contains a doublet of O-form spinors, that is the 
hyperinos 5” (a = 1, . . . , 2m and here the lower or upper position of the index denotes 
left, respectively right chirality) and four real scalar fields q” (u = 1, . . . ,4m), that 
can be regarded as coordinates of a quaternionic manifold ‘HM which can be chosen 
arbitrarily. 

dima;p 7_IM, = m, dimu XMm = 4m. (8.2) 

As explained in the previous sections any quatemionic manifold has a holonomy group 

‘Flol(lFIM,) c SV(2) @ Sp(2m, R). (8.3) 

and the index a! of the hyperinos transforms in the fundamental representation of 

Sp(2m W. 
Using the information collected in the previous sections we can immediately write down 
the definition of the curvatures and covariant derivatives for all the fields. The definition of 
curvatures in the gravitational sector is given by 

Ta = VVa - iFA A y”@‘, (8.4) 

whereoi = ii&( andwi = eAC CDBW~, and where the gauged connections for the 
SU and C bundles were introduced in Eqs. (7.57). In all the above formulae the pull-back 
on space-time through the maps 

2’ :kfq-SM, qU:Mq-“?lM (8.8) 

is obviously understood. In this way the composite connections become 1 -forms on space- 
time. 

In the vector multiplet sector the curvatures and covariant derivatives are: 

Vz’ = dz’ + gA”k’ (z) A ’ (8.9) 

(8.10) 

(8.1 la) 

(8.1 lb) 

F” = dA” + &f&A= A Ar + EAT/, A $bBEAB 
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+ L”$ 
A 

A IlrBtAB, (8.1 lc) 

where the gauged Levi-Civita connection c! on SM is also given by Eq. (7.57) and where 

L” = eK’2XA is the upper half (electric) of the symplectic section of ‘7-i introduced in 
Eq. (4.26). The lower part MA of such a symplectic section would appear in the magnetic 
field strengths if we did introduce them. 

Finally in the hypermultiplet sector the covariant derivatives are: 

UA” = U$Vq” = U,A”(dq” + gA”k;(q)), (8.12) 

Vi, = dt, - $Wabyab& - $ii?F, + &‘{p, (8.13) 

05” = d<” - ~Wabynb<* + $iGca + 2D[B, (8.14) 

where A? is the gauged Levi-Civita connection on I-LM defined in Eq. (7.57), satisfying 
the condition to be Sp(2m, R) Lie-algebra valued and 

ZZ E Z%&, Z; = @~v,ZY (8.15) 

Let us note that the definition of the generalized curvatures as given in Eqs. (8.4)- 
(8.7) and (8.11) has been chosen in such a way that when all the p-forms are extended to 
superforms in superspace they give the correct supercurvatures of the N = 2 superalgebra; 
that means that if we set all supercurvatures to zero, the corresponding equations represent 
the N = 2 superalgebra in dual form. Given these definitions our next task is to write 
down the space-time Lagrangian and the supersymmetry transformation laws of the fields. 
The method employed for this construction is based on the geometrical approach: for a 
review see [3 11. The rheonomic derivation of the N = 2 theory is explained in Appendix 
A. Actually one solves the Bianchi identities in N = 2 superspace and then constructs the 
rheonomic superspace Lagrangian in such a way that the superspace “curvatures” given by 
the solution of the Bianchi identities are reproduced by the variational equations of motion 
derived from the Lagrangian. After this procedure is completed the space-time Lagrangian 
is immediately retrieved by restricting the superspace p-forms to space-time. 

Using the results of Appendix B one finds the space-time N = 2 supergravity action that 
can be split in the following way: 

S = ,/-gd4x[Ck + C4f + G;], (8.16) 
Lk = lEn + CPauli, C4f = cy; + cqy-, q = Gmss - V(z, 739). 

where Cpn consists of the true kinetic terms as well as Pauli-like terms containing the 
derivatives of the scalar fields. The modifications due to the gauging are contained not only 
in Lb but also in the gauged covariant derivatives in the rest of the Lagrangian. We collect 
the various terms of (8.16) as follows: 

N = 2 supergravity Lagrangian 
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(8.19) 
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where 3&” = 4 (.T;L”v III ~iE@“pa3~0) and (. . .)- denotes the self-dual part of the fermion 

bilinearsrihe mass matrices are given by: 

(8.23) 

The coupling constant g in CL is just a symbolic notation to remind that these terms are 
entirely due to the gauging and vanish in the ungauged theory, where also all gauged 
covariant derivatives reduce to ordinary ones. Note that in general there is not a single 
coupling constant, but rather there are as many independent coupling constants as the number 
of factors in the gauge group. The normalization of the kinetic term for the quaternions 
depends on the scale h of the quatemionic manifold, appearing in Eq. (5. lo), for which we 
have chosen the value h = - 1. Furthermore, using the geometric approach, the form of the 
supersymmetry transformation laws is also easily deduced from the solution of the Bianchi 
identities in superspace (see Appendix A). One gets the following. 

Supergravity transformation rules of the Fermi$elds 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

(8.28) 



(8.29) 

(8.30) 

(8.3 1) 

(8.32) 

(8.33) 

(8.34) 

(8.35) 

(8.36) 

(8.37) 

(8.38) 

(8.39) 

(8.40) 

In Eqs. (8.34), (8.35), (8.38) and (8.39) we have denoted by F,, the supercovariant field 
strength defined by 

(8.41) 

Let us make some observations about the structure of the Lagrangian and of the trans- 
formation laws. 
(i) We note that all the terms of the Lagrangian are given in terms of purely geometric ob- 

jects pertaining to the special and quatemionic geometries. Furthermore the Lagrangian 
does not rely on the existence of a prepotential function F = F(X) and it is valid for 
any choice of the quaternionic manifold. 

(ii) The Lagrangian is not invariant under symplectic duality transformations. However, in 
the absence of gauging (g = O), if we restrict the Lagrangian to configurations where 
the vectors are on shell, it becomes symplectic invariant (ref). This allows us to fix the 
terms appearing in .Cizz in a way independent from supersymmetry arguments. 
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Here we report only the results of the application of the method of [4,67] in our case. For 
a complete treatment see [4,67]. The non-invariant part of the Lagrangian is 

l= CT? + ~““ir + c;o;i”v, (8.42) 

where ,C~~““” = i(fl,,3T-“3’-c - hc.). The part Cam”’ of the 4-fermi Lagrangian is 
fixed by the requirement of on-shell vector invariance. Indeed, imposing the equation of 
motion for the gauge fieldswith straightforward calculations one finds that Cnoninv can be 
written as follows: 

L noninv 
on shell = ;(F-““; + h.c.) + C;‘$$, (8.43) 

where 

with 

From duality arguments it then follows [4,67] that the non-invariant 4-fermion terms can 
be written as the following perfect square: 

C noninv 
4ferm = +~iti;,P”t-Al~U + hc. = +ii(N - ~)AE~,-,“T-~I~” + h.c. (8.46) 

This result was in fact employed as a useful consistency check in the calculations to construct 
the Lagrangian. 
(iii) We note that the field strengths 3:~ originally introduced in the Lagrangian are the 

free gauge field strengths.The interacting field strengths which are supersymmetry 
eigenstates are defined as the objects appearing in the transformation laws of the 
gravitinos and gauginos fields, respectively, namely the bosonic part of Ti” and G$, 
defined in Eqs. (8.34) and (8.38). 

9. Comments on the scalar potential 

A general Ward identity [39] of N-extended supergravity establishes the following for- 
mulae for the scalar potential V(4) of the theory (in appropriate normalizations for the 
generic fermionic shifts 6~~) 

a B-b 
ZnbSAX 6 X - ~MAcM -" =S;V(@, A, B = l,..., N, (9.1) 

where 6AXa is the extra contribution, due to the gauging, to the spin i supersymmetry 
variations of the scalar vev’s, .& is the (scalar dependent) kinetic term normalization and 
MAC is the (scalar dependent) gravitino mass matrix. Since in the case at hand (N = 2) 
all terms in question are expressed in terms of Killing vectors and prepotentials, contracted 



156 L. Andrianopoli et al./Joumal of Geometry and Physics 23 (1997) Ill-189 

with the symplectic sections, we will be able to derive a completely geometrical formula 
for V(z, Z, q). The relevant terms in the fermionic transformation rules are 

s@A@ = kSABywcB, SkiA ZZ gWiABcB, SC, = gN,AeA. (9.2) 

In our normalization the previous Ward identity gives 

V = (gij*k>kJc’ + 4h,,kik&)EAL’: + (U”’ - 3L”Lc)PiP$ (9.3) 

with lJAc as defined in (4.40). Above, the first two terms are related to the gauging of 
isometrics of SK: @ Q. For an abelian group, the first term is absent. The negative term is 
the gravitino mass contribution, while the one in U nc is the gaugino shift contribution due 
to the quatemionic prepotential. Eq. (9.3) can be rewritten in a suggestive form as 

V = (kn, kc)?LC + (UAc --A c -3L L ,<P;Pg -P,P,), (9.4) 

where 

(k~,k=)=(k~,k~,k~)(Hj ‘r 29,u) (g) (9.5) 

is the scalar product of the Killing vector and we have used Eq. (7.6) and the relation 

k;L” = kn’z’ = P,L” = P,,,z’ = 0. (9.6) 

Pi are the quatemionic (triplet) prepotentials and UAE, L” are special geometry data. 
In a theory with only abelian vectors, the potential may still be non-zero due to 

Fayet-Iliopoulos terms 

P; = 6; (constant), 8Yz<if& = 0. (9.7) 

In this case 

V(z, Z) = (U”C - 3L*L=)t$t$. (9.8) 

Examples with V(z, 2) = 0 but non-vanishing gravitino mass (with N = 2 supersymmetry 
broken to N = 0) were given in [36], then generalizing to N = 2 the no scale models of 
N = 1 supergravity [42]. These models were obtained by taking a ti = (CO, 0,O). In this 
case the expression 

V=U~-3Z”L0 

reduces to 

V = (&Kg’j*+K - 3)eK, 

which is the N = 1 supergravity potential, with solution (V 

prepotential 

(9.9) 

(9.10) 

0) the cubic holomorphic 

XAXBXC 
F(X) = dABC xo 1 A= l,...,n. (9.11) 
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Another solution is obtained by taking the SU(I, 1)/U(l) @ SO(2, n)/SO(n) coset in 
the SO(2, n) symmetric parametrization of the symplectic sections (X”, FA = ~AzSX’; 
X”X’qnc = 0, q~x = (1, 1, - 1, . . , - 1)) where a prepotential F does not exist. In this 
case 

U”= - 3LQ‘C = - 1 
-VAE, 
i(S - S) 

(9.12) 

where we have used the fact that 

J% = (s - S)(@ATc + TA@c) + SrlAz, (9.13) 

The identity (9.12) allows one to prove that the tree-level potential of an arbitrary heterotic 
string compactification (including orbifolds with twisted hypermultiplets) is semi-positive 
definite provided we do not gauge the graviphoton and the gravidilaton vectors (i.e. P; = 0 
for A = 0, 1, P: # 0 for A = 2, . . . , nv). On the other hand, it also proves that tree-level 
supergravity breaking may only occur if Pi # 0 for A = 0, 1. This instance is related 
to models with Scherk-Schwarz mechanism studied in the literature [40,41]. A vanishing 
potential can be obtained if 6; = ([A, 0,O) with 

<AbIrl nc = 0. (9.14) 

In this case we may also consider the gauge group to be U ( l)P+2 @ G(nv - p) and intro- 

duce <A = ((03 . . . > tp+l, 0, . . ,O) such that <At~t7”~ = 0 where qAc is the SO(2, p) 
Lorentzian metric. The potential is now 

j*-A c 
V = k>g;j+k, L L (u”E - 3LALz)P;P$ = 0, 

where k> LA = 0 for A 5 p + 1. The gravitino have equal mass 

(9.15) 

1 m3/2 k eK’2 1 tAXA 1 (9.16) 

with !iAb 17 AC = 0 A = 0, . . . , p + 1. It is amusing to note that the gravitino mass, as a 
function of the 0 (2, ‘p)/O (2) @ 0 (p) moduli and of the F-I terms, just coincides with the 
central charge formula for the level NL = 1 in heterotic string (H-monopoles), if the F-I 
terms are identified with the 0 (2, p) lattice electric charges. 

Note that, because of the special form of the gauged G, Z, we see that whenever PA # 0 
the gravitino is charged with respect to the U( 1) factor and whenever PA # 0 the gravitino 
is charged with respect to the SU(2) factor of the U( 1) @ SU(2) automorphism group 
of the supersymmetry algebra. In the case of U( 1)” gauge fields with non-vanishing F-I 
terms c; = (0, 0, cpb) the gauge field Aiif~ = A, gauge a U( 1) subgroup of Sum susy 
algebra. Models with breaking of N = 2 to N = 1 [29] necessarily require kf; not to be 
zero. The minimal model where this happens with V = 0 is the one based on 

(9.17) 
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where a U( 1) @ U( 1) isometry of Q is gauged. In this case the vanishing of V requires a 
compensation of the 6h, SC variations with the gravitino contribution 

(9.18) 

The moduli space of vacua satisfying (9.18) is a four-dimensional subspace of (9.17). 
One may wonder where the explicit mass terms for hypermultiplets are. In N = 2 

supergravity, since the hypermultiplet mass is a central charge, which is gauged, such a 
term corresponds to the gauging of a U( 1) charge. This is best seen if we consider the case 
where no vector multiplets (and then gauginos) are present. In this case L” = Lo = 1 and 
the potential becomes 

V = 4h,,k”kv - 3PxPx, (9.19) 

where k” is the Killing vector of a U(1) symmetry of &, gauged by the graviphoton and 
PX is the associated prepotential. For SO (4, l)/SO (4) this reproduces the Zachos model 
[69]. The gauged U(1) in this model is contained in S&(2) which commutes with the 
symmetry Sum in the decomposition of SO(4) = Sum @ S&(2). This model has a 
local minimum at vanishing hypermultiplet vev at which U (1) is unbroken, and the extrema 
(at u = 1) (maxima) which break U(1). The extremal model is when both no = nv = 0. 
Still we may have a pure F-I term 

v = -362, C = CC, 090). (9.20) 

This corresponds to the gauging of a U (1) c SU (2)~ and gravitinos have charged coupling. 
This model corresponds to anti-De Sitter N = 2 supergravity [44]. 

10. The rigid limit: N = 2 matter coupled Yang-Mills theory 

In this section we consider the rigid limit of matter coupled N = 2 supergravity. The 
aim is that of obtaining the most general form of matter coupled N = 2 super Yang-Mills 
theory. By this we mean the rigid supersymmetric N = 2 theory of 12 vector multiplets cou- 
pled to m hypermultiplets interacting through a generic rigid special manifold and a generic 
hyperKiihler manifold. Such a theory, in general, is not renormalizable: renormalizability 
obtains only in the case of aJut special manifold and aflat hyperK%hler manifold. Yet it is 
very interesting as an effective low energy Lagrangian. Seiberg-Witten Lagrangian [l] is 
just an instance in this general class. One could derive this type of theory by direct methods 
solving Bianchi identities in flat superspace and then constructing the corresponding rheo- 
nomic action. It is, however, much simpler to derive through a suitable scaling limit from 
the N = 2 supergravity theory. The contraction parameter is obviously the Planck mass w 
and the limit must be performed in such a way that local special geometry flows to rigid 
special geometry and quaternionic geometry flows to hyperK&hler geometry. We already 
know how this can happen: the curvature of the line and SU(2) bundles must flow to zero 
in the limit. Section 10.1 we describe the appropriate resealings. Then in a further section 
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we report the final result written in space-time component formalism for the benefit of the 
reader who does not want to be involved with the rheonomy formalism. 

10. I. Planck mass resealings 

We begin with the special geometry sector. Here we consider the covariantly holomorphic 
symplectic section (4.26) and write 

VE 
L” 

( > 

X” 

Mc = exp[Wl Fz. 
( > 

= exp[Q(W*)l ( 
.520 + ii? + li2, , 

P3 ) 
(10.1) 

where 

(10.2) 

The hatted objects are those that survive in the infinite Planck mass limit /_L + co. Recalling 
Eq. (4.25) we obtain: 

=-i(Y’F, --‘JY~) 

(10.3) 

which reproduces Eq. (4.49) for the Kahler potential of rigid special geometry. An obser- 
vation here is in order. The last line in Eq. (10.3) still differs from Eq. (4.49) in one respect: 
the symplectic metric and the symplectic sections in (10.3) are (2n + 2)-dimensional while 
those in Eq. (4.48) are 2n-dimensional. Yet the entries of the symplectic sections in the 
two additional dimensions are always zero so that we can safely reduce the bundle and its 
structural group from Sp(2n + 2, [w) to .Sp(2n, [w). 

Let us next consider 
resealings we obtain 

the symplectic vector U; defined in Eq. (4.29). Using the above 

(10.4) 
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where 

fii = = &ii. (10.5) 

So we have retrieved Eq. (4.50), apart from the identically zero extra entries. Hence we can 
set 

1, 
gij’ = Tgij*, 

which is consistent with 

gj* = -i(cilgj*) 
(10.7) 

that reproduces the first of Eqs. (4.58): the second of such equations is retrieved by setting 

(10.8) 

Finally we observe that the Levi-Civita connection fjk is not resealed by any power of the 
Planck mass since it contains a metric and an inverse metric (see Eq. (D. 19)). This implies 
the following resealing for the Riemann tensor of the special manifold: 

Rij’kl* = 
(10.9) 

and the fundamental identity of local special geometry (4.18) becomes 

Rij*kt* = $(gj*Li* + gkj*g/*) + ‘?i,ks~f*j*l*~;sl* (10.10) 

that in the limit p + 03 reproduces the fundamental identity of rigid special geometry 
(Eq. (4.55)). 

Summarizing we have: 
Resealings in the special geometry sector 

^i l-i -+ rjk Jk Q-+-Q ;2-, 

(10.11) 

Next we consider the resealings in the quaternionic manifold sector. Here we set: 
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Resealings in the quaternionic manifold sector 

161 

u 1 ^olA wA + -U h,, -+ 
I-L 

Using these resealings the quaternionic algebra (5.22) is satisfied by the resealed hy- 
perKIhler structures gi, as much as by the unrescaled ones K,X,: however, the relation 

(10.12) 

(5.12) between the SU(2) curvatures and the hyperKahler structures K,X, becomes 

(10.13) 

and in the limit /_L --+ CC we obtain A? = 0, as indeed we expect in the case of a hyperKIhler 
manifold. Indeed we can rephrase this result by saying that, upon restoration of physical 
units, the SU(2)-curvature scale is 

X 
A.=- 

p= 
(10.14) 

and in the infinite Planck mass limit goes to zero. Indeed when we fixed h = - 1 to obtain 
canonical kinetic terms this value had to be interpreted in squared Planck mass units (namely 
x = - 1). Eqs. (10.12) are consistent with the definition 

i,?‘Pi = V?4 = d?4 (10.15) 

of the triholomorphic momentum map on hyperKMer manifolds. The last equality in 
Eq. (10.15) is justified by the vanishing of the SU(2) curvature that is obtained in the limit 
I-( + 00. Finally the resealed form of the quatemionic equivariance Eq. (7.54) is 

(10.16) 

and in the infinite Planck mass limit it flows into the equivariance condition of momentum 
maps for hyperKNer manifolds, that is Eq. (7.50). 

To complete our rigid limit programme we have to prescribe the appropriate Planck mass 
resealings for the space-time fields and the fermions. These are as follows: 

Resealings of space-time jelds and fermions 

(10.17) 

Utilizing the resealings of Eqs. (10.1 l), (10.12) and (10.17) in the curvature defini- 
tions (8.4)-(8.7), (8.9)-(8.14) and in the curvature rheonomic parametrization given in 
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Appendix B, by performing the limit p -+ co we obtain the rheonomic parametrization 
and curvature definition of the rigid theory. Indeed the first four equations (A.23)-(A.25) 
become: 

Ta = dV“ - uab A V’t,b, = 0, 
PA = dr/fA - $Wab A yab@/A = 0, 

PA E d+A-lWabA\y$A=O 4 
Rab E dmab - mat A $nC, = 0,’ 

(10.18) 

that are the structural equations of N = 2 rigid superspace if they are completed with 

l- 
F” = dA” + -&@A A @BE AB + TA A $kB&AB] = 0. (10.19) 

Eq. (10.19) is precisely what we obtain in the p + co limit from the case A = 0 of 
Eqs. (A.27) and (8.11). Algebraically Eq. (10.19) tells us that the graviphoton l-form is the 
dual of the central charge generator. The case A = I of the same equations provides the 
definition and rheonomic parametrization of the Yang-Mills curvatures in rigid superspace: 

F’ E dA’ + igfiKAJ A AK + Y’FA A $gcAB + Y’T 
A 

A $J~CAB 

= FibVa A Vb + (iA’?Aya$BC,JB + if~.j;~~Q$BeAB) A Va. (10.20) 

From the I_L + co limit of Eqs. (A.28) and (A.29) we obtain the gaugino curvature 
parametrizations: 

ViiA = VahiAVa + iZ6ya$rA + G;LYabeBCAB + DiIABtiB, 

Viz = V,L’,*V” + izffya$rA + G,+d”yab+BEAB + D;,lcrB, 
(10.21) 

where Zg and ZA* are defined by Eq. (A.30) and its complex conjugate that survive unmod- 
ified in the limit while G:i* and the auxiliary fields DiIAB, DRB are given in Eqs. (10.35). 
As usual the rheonomic parametrizations correspond to the supersymmetry transformation 
rules that we have collected in Section 10.2 together with the space-time action for the ben- 
efit of those readers who do not want to get involved with the rheonomy formalism. Also 
the rheonomic parametrizations (A.32)-(A.34) maintain the same form in the rigid limit, 
but the hyperino shifts Ni, N,” are now given by Eqs. (10.35). Using the same scaling limit 
one obtains the rigid rheonomic action (which we do not report) from which one retrieves 
the space-time action reported in Section 10.2. 

10.2. Summary of the rigid N = 2 Yang-Mills theory 

Let us then summarize our results by writing the final most general form of N = 2 matter 
coupled Yang-Mills theory. Such a theory arises from a generic choice of the rigid special 
manifold SMh,, a generic choice of the hyperK%hler manifold IFIMei, and a generic choice 
of the gauging. 



L. Andrianopoli et al. /Journal of Geometry and Physics 23 (1997) I1 l-189 163 

Let 

3’ = dA’ + ; fjKAJ A AK=3Lu d.x@ A dx” ( 10.22) 

be the field strengths of the gauge group G. Let zi be the coordinates of the rigid special 
manifold SMria, whose complex dimension n equals the real dimension of the gauge group 
and let qU be the 4m coordinates of the hyperKUer manifold ‘Ft!HMria. In addition let h’ A, 11 
be the two chiral projections of the gaugino field and {“, & the two chiral projections of 
the hyperino field. Let us moreover define: 

The covariant derivatives of the BoseJields 

V/‘ii = a,$ + gA;k;, 

V & = a,‘i;’ + gA;kj’, 

V,q’ = apqu + gA;k;, 

and 
The covariant derivatives of the FermiJields 

V,hiA = a,hiA + (ciV,zi + gALajkf)hjA, 

V,hx = +hiff + (Filk*V,Zi’ + gA:+kj*)h/a’, 

VJ = a,(” + (A$%,q’ i- gA:a,kYUU’ffAU,BB&AB)~~~tY, 
(10.23) 

VII{,/ = acLSY + C,,(A$%,q” + gA:a,kYUU”YAU~B&A~)~~. 

In terms of these field strengths and derivatives and of all the geometric structures pertaining 
to rigid special manifolds and to hyperKlhler manifolds discussed in previous sections the 
most general N = 2 supersymmetric invariant Lagrangian has the following form: 

Matter coupled N = 2 Yang-Mills action 

(10.24) 

where 

( 10.25) 

(10.26) 

(10.27) 
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&otential = - V (Z3 23 4) 9 (10.28) 

~4fermi = SR;j*,k*~iAA’B~j;hk 

+ laga u’ us 
2 Bits Ay BS 

aAB@F { rq’ 
CY D 

- ~ImN,JCij~C~~n~kr*~ns*~~~~~~~iA~~”~’B~1c~~v~mD~AB~~D 

- &Im NIJCi*j*k*~t*m*n*gk*rgn*s f,’ 

x f~Aa’y,,,h~hkEyi”“),‘;EABECD, (10.29) 

where the mass matrices and the scalar potential are given by: 
N = 2 Yang-Mills mass matrices and scalar potential 

M*‘b = -g~;A@B,,,V’Uk;lY’, 

(10.30) 

(10.31) 

(10.32) 

The coupling constant in front of the mass matrices and of the potential is just a symbolic 
notation to remind the reader that these terms are entirely due to the gauging and vanish 
in the ungauged theory. In general there is not a single coupling constant rather there are 
as many independent coupling constants as mutually commuting subgroups in the gauge 
group. For instance if G is a product or r U(l)-factors, there are r independent coupling 
constants that can be reabsorbed into the definition of the killing vectors kj , ky . 

The supersymmetry transformation rules with respect to which the Lagrangian (10.24) 
is invariant are the following ones: 

N = 2 rigid transformation rules of BoseJields 

N = 2 rigid transformation rules of Fermi fields 

(10.33) 

(10.34) 
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where: 
N = 2 rigid values of the auxiliary fields 

G-’ = 
l*” 

G+i’ _ 
IL” - 

DilAB _ - 

D” 
IAB = 

y;lAB = 

Yi’,AB = 

WiIIABl _ - 

wi’,Aa, = 
wI’ILW _ - 

wi’,(AB) = 
N; = 
N; = 

(10.35) 

10.3. The renormalizable microscopic theory 

As an exemplification of the general formalism and for the sake of its intrinsic interest, in 
this section we consider the case of the renormalizable microscopic N = 2 (matter coupled) 
Yang-Mills theory. The theory is specified by the choice of the following geometrical data: 
(1) A flat rigid special manifold SMH,~ describing the vector multiplet couplings. 
(2) A flat hyperKahler manifold 3iM aat describing the hypermultiplet couplings. 
Let us briefly discuss these geometries and the corresponding form of the Lagrangian. 

10.3. I. Flat rigid special geometry 
In the vector multiplet sector the appropriate geometry is described as follows. Let 8 

be the theta-angle, l/g2 the inverse of the squared gauge coupling constant, and g[J the 
constant Killing metric on the gauge Lie algebra. Define the complex parameter 

1 
t=O+i? (10.36) 

‘9 

and choose as holomorphic section of the flat symplectic bundle the following one: 

Z,J= l,..., n=dimG. (10.37) 

In this case the upper half of the holomorphic section (10.37) can be taken as coordinates 
on the manifold (the special coordinates) 

z’ 5% Y’. (10.38) 
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The action of the gauge group on these coordinates is obviously the adjoint action 

S[YJ = &YK, (10.39) 

where f:K are the structure constants of the gauge Lie algebra 

ltl, rJ1 = f;KJtK, (10.40) 

11 being a basis of generators. Hence using Eqs. (4.58) and (4.57) we obtain 

J%J = %IJ gij* = %nrgIJ, 

IrnNIJ = -Im q?IJ, fi’ = a,/, (10.41) 

Cijk = 0, k j = fJ,KYK. 

10.3.2. Flat hyperKdhler geometry 
In the hypermultiplet sector we arrange the 4m coordinates q” of ‘FIMa,t = R4m into a 

4m column vector 

q E qa’( a=0,1,2,3, t=l,2 ,... m 

that is regarded as an element of the tensor product R4 @ R”’ - R4m. Let 

0 1 0 0 
-10 0 0 J-11 = 

0 0 -1 0 

00 01 J-12 = 

0 -1 0 0 

J-13 = 

-1 0 0 0 

0 10 0 
-1 0 0 0 
0 0 0 -1 ’ 
0 01 0 i 

0 0 -1 0 
0 0 0 -I 
100 0’ 
010 0 1 
0 0 0 1 
0 0 -1 0 
0 10 0’ 

-10 0 0 1 

(10.42) 

(10.43) 

be the two triplets of self-dual and antiself-dual t’Hooft matrices satisfying the quatemionic 
algebra: 

J*b J*b = _,jX?)14x4 + eXYz J*k, 

0 = [J+‘“, J-ly] Vx, y. 
J fix &lx 

ab = +abcdcd 3 

Let, furthermore 

I 
1 0 c ) eo= o , , 

(10.44) 

(10.45) 

1 [e3=(;' p> 
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be a complete basis of two matrices for the expansion of a generic quaternion 

Q = q”ea, ( 10.46) 

e,, being the three imaginary units. The flat hyperKahler metric and the corresponding 
triplet of hyperKShler 2-forms are given by 

ds* = h,, dq” dq” = dqT(14,4 @ l,,,) dq, 
K” = dqT A (,+I1 ~3 lmx,) dq. 

(10.47) 

Alternatively, in the above formula one can use the triplet of antiself-dual t’Hooft matrices 
to define the hyperKahler structure. Using the identities 

J+ls = 1 
ab 2 tr(%ebe.T)3 Ja;‘̂  = -i tr(e,eTeb) ( 10.48) 

and rearranging the 4m coordinates q al’ into an m-vector of quatemions: 

( 10.49) 

Eqs. (10.47) can be rewritten as follows: 

ds* = 4 tr( dQtlmXm dQ>, K = i dQrmT A l,,, de = iKXeT. (10.50) 

The action of the gauge group 6 on the hypermultiplets is assumed to be linear and generated 
by a set of 4m x 4m matrices TI . Namely we set 

61q = TIq + ky = (Tr);q”. (10.51) 

In order for this action to be an isometry of the Euclidean diagonal metric (10.47) it is 
necessary and sufficient that the matrices TI belong to the orthogonal Lie algebra S 0 (4m), 
namely 

T; = -TI. (10.52) 

The action of G, however, is not only required to be isometrical but also to be triholomorphic. 
This means 

llKX = iI dKX + diIKX = di[KX = 0. (10.53) 

A straightforward calculation yields 

dir KX = - dqT A [TI, JflX @ lmxm] dq (10.54) 

so that the triholomorphicity condition is that the generators TI should commute with the 
tensor product of the t’ Hooft matrices with the unit matrix in m dimensions. When this last 
condition is verified we can write the momentum maps as 

P; = qTJ+lx C3 lmxmTIq. (10.55) 
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Alternatively using the quatemionic notation we have 

(10.56) 

10.3.3. The Lagrangian 
Using these ingredients the Lagrangian of the microscopic renormalizable theory is im- 

mediately retrieved from the general formulae of Section 10.2. It is convenient to set: 

Y = Y’Q 3 r = Pt,, 
F E F$t, tr(t1t.I) = gIJ, 

(10.57) 
PV 

tI denoting a basis of generators of the gauge group and in this condensed notation we 
obtain 

L 
microscopic 
N=2YM 

= LE;;yoPic + L;;ic;Pic, 

where the bosonic Lagrangian is 

(10.58) 

L microscopic 
bosonic = -1m ttr(F,,F,,) + iRertr(FPVFpa)&‘L”Pa 

+ 2 Im ttr(V,YV,r) + V,qTVwq, -VW, q), (10.59) 
3 

V(Y, q) = 21m 5 tr([Y, Y])2 - 2qT[Y, Y)q + & C PfP,XgIJ. 
X=1 

(10.60) 

The formula for the scalar potential exhibits in a clear fashion the flat directions associ- 
ated with the moduli fields Y in the Cartan subalgebra X of the gauge algebra. Actually 
the potential is just homogeneous of degree 4 in all the scalar fields as expected from 
renormalizability. 

The fermionic part of the Lagrangian also simplifies very much since it just contains the 
kinetic part and the mass terms induced by the gauging. The Pauli terms and the 4-fermi 
terms are all zero, since the tensor Cijk vanishes and the Riemann tensors of the special and 
hyperKahler manifolds also vanish. The evaluation of the mass matrices is straightforward 
by inserting the explicit form of the Killing vectors and of the momentum maps into Eqs. 
(10.30) and (10.3 1). The only item that is still missing in such a calculation is the explicit 
form of the quaternionic vielbein. This is very easily given. We set 

UAa z U@ dq ‘Is = dQ = dqalr(e,)i (10.61) 

and we identify the symplectic index a! running on 2m values with the pair of indices B, t 

(B = 1,2;t = l,..., m). In this way we obtain 

UAlt 
BIbIs = 8:(Q);. (10.62) 

Appendix A. The solution of the Bianchi identities and the supersymmetry 
transformation laws 

In this appendix we describe the geometric approach for the derivation of the N = 2 
supersymmetry transformation laws of the physical fields. As it will appear in the following 
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this requires the preliminary solution of Bianchi identities in superspace. 
The first step to perform is to extend the physical fields to superfields in N = 2 superspace: 

that means that the space-time l-forms wab, Va,qA, @A, A” and the space-time O-forms 
hi A, hi, z’, $‘, Ta, &, q” defined in Section 8 are promoted to 1-superforms and O- 
superforms in N = 2 superspace, respectively. 

The definition of the superspace curvatures actually coincides with that given in 
Eqs. (8.4)-(8.14) provided all the p-forms (p = 0, 1,2) are thought as p-superforms 
(here and in the following by “curvatures” we mean not only 2-forms, but also the 1 -forms 
defined as covariant differentials of the O-form superfields). 

We note that the definition of superspace curvatures in the gravitational sector, namely: 

where F” denotes the graviphoton, has been chosen in such a way that by setting Rub = 
T“ = ,oA = p.4 = F” = 0, deleting the composite connections G, w^t and normalizing 
L’(O, 0) = 1 we obtain the Maurer-Cartan equations of the N = 2 Poincare superalgebra 
where the l-forms uab, Va, $bA, +A, A0 are dual to the corresponding generators of the 
group. 

The next step is to write down the Bianchi identities for all the curvatures and to solve 
them in superspace. Applying the d operator to Eqs. (A. l)-(A.4) and (8.9)-(8.14) one finds: 

VTa + 

Vb’A + 

VpA + 

;nRab = 

vzzi _ 
??vzzi _ 

V2iiA + 

V2h’a + 

VF” - 

(‘4.6) 

(A.7) 

(A.@ 

(A.9) 

(A.10) 

(A.1 I) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A. 17) 
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The covariant derivatives V and D have been defined in Eqs. (A.l)-(A.5) and include 
the gauged connections defined in Eq. (7.57). Furthermore the hat on the scalar manifolds h h. 
curvatures K, Rj, %, gt denotes the gauged curvatures defined in (7.58). 

The solution can be obtained as follows: first of all one requires that the expansion of the 
curvatures along the intrinsic p-forms basis in superspace namely: Va, Vu A Vb, I+, $ A 
Vb, @ A @, is given in terms of only the physical fields (rheonomy). This ensures that no 
new degree of freedom is introduced in the theory. 

Secondly one writes down such expansion in a form which is compatible with all the 
symmetries of the theory, that is: covariance under U(1) KMer and SU(2) (8 Sp(2, m), 
Lorentz transformations and reparametrization of the scalar manifolds. Besides it is very 
useful to take into account the invariance under the following rigid resealings of the fields 
(and their corresponding curvatures): 

(W ab, A”, q’, zi, z’j -+ (wab, A”, q’, zi, z”), 

va -+ lva, 

(GA, $A) + h’+IA~ +A), 

(hiA, h;, ca, &) + &k.‘A, h’A, ca, [a). 

(A.18) 

(A. 19) 

(A.20) 

(A.21) 

Indeed these resealings and the corresponding ones for the curvatures leave invariant the 
definitions of the curvatures and the Bianchi identities. 

Finally we note that we are looking for a solution of the coupled system of Bianchi 
identities of the gravitational sector with those of the matter sectors. The coupling is obtained 
by setting the auxiliary fields of the N = 2 multiplets to definite expressions in the physical 
fields compatible with all the previously mentioned requirements. This fixes completely the 
ansatz for the curvatures at least if we exclude higher derivative interactions. 

Performing all the steps requires a lot of work. For a more detailed explanation the 
interested reader is referred to the standard reference of the geometrical approach [3 11. The 
final parametrizations of the superspace curvatures are given by: 

Ta=O, 

PA = pAlabVa A Vb + (A,Blbqab + Ay’byab)@s A Va 

+ [ksABr]ab + ~AB(T$ + u,+,>IYb$B A Vat 

(A.22) 

(A.23) 

PA = &$Va A Vb + ($‘b?jat, + x;‘byab)$B A Vu 

+ [igSABqab + cAB(Tn+b + lJai)]vb@~ A Va, (A.24) 

R ab -ab c =R,,V A V d -i(F,6, A’ab + TA6;f,) A vc 

i-Cabcf~A A yf@~(A$ - A$) 

+ icAB?, A @B(T+~~ + .-ab) - kABqA A $B(T-ab + Ufab) 

-gSA&A A yablCrB - gSAB& A yab$B, (A.25) 

F” = Fa;Vn A Vb + (if,“hLAya$fBcAB + i~$%~~a$a~AB) A Vu, (A.26) 
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VhiA = vTkiAva + izLya+A + G,-dyab+scAB + (YiAB + gWiAB)$B, (A.27) 

V;i: = VTizva + if?~~“$A + G,+d’*yab~B~AB + (yiB + swyB)+B, (A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

(A.42) 

(A.43) 

(A.44) 

(A.45) 

(A.46) 

(A.47) 

(A.48) 

(A.49) 

(A.50) 
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As promised the solution for the curvatures is given as an expansion along the 2-form basis 
(V A V, V A @, pb A @) or the l-form basis (V, +) with coefficients given in terms of the 
physical fields. 

The “on-shell” auxiliary fields are given in our case by the composite connections G, ~2 
and by Taz, WiAB and SAB. 

It is important to stress that the field strengths &$, F&b, ?$ , tiff = U~‘yV~~U, 

V:‘*, VT{, and their hermitian conjugates are not space-time field strengths since they 
are components along the bosonic vielbeins Va = Vi dxp + Vz dP where (Vz, V,“) is a 
submatrix of the super-vielbein matrix E’ = (Vu, Q). The physical field strengths are given 
by the expansion of the forms along the dxP-differentials and by restricting the superfields to 
space-time (0 = 0 component). For example, from the parametrization (A.26), expanding 
along the dxp-basis one finds 

(A.5 1) 

F” = 3’ + L”F* A $B+,a + ?$A A $BcAB, (A.52) 

according to Eqs. (8.11) and (A.26). When all the superfields are restricted to space-time 
we may treat the V;L” vielbein as the usual four-dimensional invertible matrix converting 
intrinsic indices in coordinate indices and we obtain 

By the same token we also get: 

V?kiA = V,h’A - i(V,z’ - ~‘B$~Iu,~v$~ - G$yUP@~lP~AB 

-(yiAB + &‘WiAB)+B,P, 

z"l = v,Z' - ?*?,?,L,~, 

fj*CY 
- u/v&’ - 6AB@(YB$&(~ - j?,“[? w - 

We note that in the component approach the “tilded” field strengths defined in the previous 
equations are usually referred to as the supercovariant field strengths. 

The physical fields appearing in the parametrizations are actually further required to 
satisfy extra-constraints which are essentially of two types: 
(1) The supercovariant field strengths satisfy a set of differential constraints which are to 

be identified, when the fields are restricted to space-time only, with the equations of 
motion of the theory. Indeed the analysis of the Bianchi identities for the fermion fields 
give such equations (in the sector containing the 2-form basis TAV”+*). Further the 
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superspace derivative along the @A (IlrA) directions, which amounts to a supersymmetry 
transformation, yields the equations of motion of the bosonic fields. This is not a surprise 
since the closure of the Bianchi identities is in fact equivalent to the closure of the N = 2 
supersymmetry algebra on the physical fields and we know that in general such closure 
implies the equations of motion for the fermion fields. Indeed in our case the usual 
auxiliary fields of N = 2 theory have been determined as suitable expressions in the 
physical fields. 

Finally we also note that since the expressions for the curvatures imply the equations 
of motion it follows that in the ungauged case (g = 0) formulae (8.24)-(8.26) are 
symplectic covariant since the ungauged theory is on-shell symplectic covariant. 

(2) The second type of constraints following from the closure of Bianchi identities is a set 

of differential constraints on the upper part L”, 
--A 
L , fi”, 7; of the symplectic sections 

V and CTi and of the 7M3 @I C2 sections Cijk (together with its complex conjugate 
ci*j*k*). 
One finds: 

Vi..’ = ViLn = 0, (A.%) 

fi” = ViL”, f$ = Vi*Z’, (A.56) 

v/*Cijk = v/ci*j*k* = 0, (A.57) 

V[[Ci]ik = VtTCi*] j’k’ = 0. (A.58) 

vj fkA = is”?: Cijk. 

Using the identities of Special Geometry (4.18) (4.26), (4.30) and (4.37) C, jk can be 
written as 

Cijk = (n/-~)A=fiAvjfkE. (A.60) 

In particular Eq. (A.59) implies the constraint given in (4.18) for the Riemann tensor 
of the Kahler-Hodge manifold while Eqs. (A.57) and (A.58) are actually equivalent to 
the other equations (4.1 S), using (4.19). Therefore the constraints (A.55)-(A.59) imply 
that the Kahler-Hodge manifold we started from is actually a special KPhler manifold. 
We may also verify that the same equations (A.55)-(A.59) hold provided we replace 
L” + MA and fiA -+ hAi (together with their c.c.). Hence we have a set of symplectic 
covariant constraints, namely 

Vi V = Ui, vj uj = iCijkgk’* u[*, Vi Uj* = Rij* V, vi*v = 0, (A.61) 

which give an alternative definition of Special Geometry in terms of differential con- 
straints on a symplectic bundle of the Kahler-Hodge manifold. This definition of Special 
Geometry was in fact first deduced in [27] from N = 2 Bianchi identities (i.e. for the 
closure of N = 2 susy algebra). Furthermore there is a close connection, exploited in 
[70], between the differential constraints (A.6 1) and the Picard-Fuchs equations for the 
periods of a three-dimensional Calabi-Yau manifold [70,7 11. 
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The determination of the superspace curvatures enables us to write down the N = 2 susy 
transformation laws. Indeed we recall that from the superspace point of view a supersym- 
metry transformation is a Lie derivative along the tangent vector 

E = -iADA + FADA, (A.62) 

where the basis tangent vectors DA, DA are dual to the gravitino l-forms 

DA@) = +(!hd = 1, (A.63) 

where 1 is the unit in spinor space. 
Denotingby~u’andR’thesetofl-forms(Va,lCrA,llrA,An)andof2-forms(Ra,p,,pA, 

Fh), respectively, one has 

1~’ = (i, d + diC)pCLI = (DE)’ + i, R’, (A.@) 

where D is the derivative covariant with respect to the N = 2 Poincare superalgebra and i, 
is the contraction operator along the tangent vector E. 

In our case: 

(DE)’ = i(?+kAyaeA + S;A?&,), (A.65) 

(DE)” = Vca, (A.66) 

(DE)’ = 0 (A.67) 

(here (Y is a spinor index). 
For the O-forms which we denote briefly as Y’ E (q’, zi, zi’, hiA, hz, &, <“) we have 

the simpler result 

1, = i, dv’ = i,(Vv’ - connection terms). (A.68) 

Using the parametrizations given for R’ and Vu’ and identifying 6, with the restriction of 
1, to space-time it is immediate to find the N = 2 susy laws for all the fields. The explicit 
formulae are given in Section 8. 

Appendix B. Derivation of the space-time Lagrangian from the geometric approach 

In Appendix A we have seen how to reconstruct the N = 2 susy transformation laws of 
the physical fields from the solution of the Bianchi identities in superspace. 

In principle, since the Bianchi identities imply the equations of motion, the Lagrangian 
could also be completely determined. However, this would be a cumbersome procedure. 

In this appendix we give a short account of the construction of the Lagrangian on space- 
time from a geometrical Lagrangian in superspace. 

In the geometric (rheonomic) approach the superspace action is a 4-form in superspace 
integrated on a four-dimensional (bosonic) hypersurface M4 locally embedded in M4f8: 

A= 
s 

c. 03.1) 

M4cM418 
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Provided we do not introduce the Hodge duality operator in the construction of C the equa- 
tions of motions derived from the generalized variational principle ad = 0 are 3-form or 
4-form equations independent from the particular hypersurface M4 on which we integrate. 
These superspace equations of motion can be analysed along the p-form basis. The com- 
ponents of the equations obtained along bosonic vielbeins give the differential equations 
for the fields which, identifying M4 with space-time, are the ordinary equations of mo- 
tion of the theory. The components of the same equations along p-forms containing at 
least one gravitino (“outer components”) give instead algebraic relations which identify the 
components of the various “supercurvatures” in superspace. 

The Lagrangian must be constructed according to the principles of rheonomy: the “outer 
components” computed from the variational equations must be all expressed in terms of 
the supercovariant components (components along the vielbeins basis). Actually if we have 
already solved the Bianchi identities this requirement is equivalent to identifying the outer 
components of the curvatures obtained from the variational principle with those obtained 
from the Bianchi identities. 

There are simple rules which can be used in order to write down the most general 
Lagrangian compatible with this requirement. 

The implementation of these rules is described in detail in the literature to which we 
refer the interested reader. Actually one writes down the most general 4-form as a sum of 
terms with indeterminate coefficients in such a way that C be a scalar with respect to all the 
symmetry transformations of the theory (Lorentz invariance, SU(2) 8 Sp(2m) and U (1) 
Kahler invariance, invariance under the resealing (A.21)). Varying the action and comparing 
the outer equations of motion with the actual solution of the Bianchi identities one then 
fixes all the undetermined coefficients. 

Let us perform the steps previously indicated. The most general Lagrangian has the 
following form: 

c = &rav + Ckin + CPauli + bxsion + C4ferm + &auging, 03.2) 

&rav = ami Rab A vc A Vd - 4@'YoL'A -FAYrrPA)Va, 

lkin =filgij*[z~(v~ j* - ?“A;) + ZI,‘(Vz’ - IlrAP)] A Vb A V“ A Vd$,.d 

+ b,W&@,Aff(UBB - $“[’ - E~%~~~,,&,) A Vb A V” A Vd~;c.d 

- i(filSij*Z;ZL + ~b~EAB~~~~~ff~~BB)~im~abcdVa A Vb A V” A Vd 

+i/?zgij*(?Ay”Vk$* +Ii*vUV;iiA) A Vh A Vc A VdCabcd 

+ ib2(? yaV& + T,y”V5‘“) A Vb A v’ A Vdcabcd 

+b%(N~Fn+b - +NnzFa;*)[Fz - i(f;z~‘Ayc+BcAB 

+ &?ha^~&B6AB) A v”] A v” A v” 
_ &p3(gnc~,;*~-CIlm __n/ F+“Fm~~llrn) A= lm 

X EabcdVa A Vb A vc A Vd. 
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+iShFn(~~~~~hiAY,~BFns +,&~l:$&&B~AB) A Vu 

+/37F”(N -J?)nc(Vi f’hiAy&hjB6AB J 

- Vi* fJZI~~~~Ajg*EAB) A Va A Vb 

+W’“(N -~)A.&‘:t,~&-/‘JC@ - ~c~aJ&“c,B) A Va A Vb 

+/h3gij*(XiAyab$AV?j’ + Ii*y&@AVZi) /‘l Vc A Vdcabcd 

+b3(?/b$k&(YA + T(YVab@A&& A V= A Vd&bc& 

&rsion = @4gij*XiAYbki* + b4TYb<u)Ta A Va A Vb, 

L4ferm =~I(L”IC~~@~EAB +L’FA@BE~“) A (NA~L’~~@~EcD 

+~A.&E&~D~CD) 

+ff2(fiA~‘Ay~@B~AB + fii?I~y~$‘BEAB) A (xAzGZhJcyb@DtcD 

t-&c f,:“;* y&XcD) A vu A Vb 

+a3(N - ??)/,Z(fi”&* fJ~X’Ayc~BA~yabhjD’~AB~CD 

-~~v~~~~A’yc9Bj;kcy~b~jDEABECD) A Va A Vb A vc 

+ a, (N - ?i&~(f;lL?iA’y,lCr& ya&cAB@uYB 

- ~ntEj;iAy,~BFUy,b~~~AB~~~) A Va A Vb A vc 

+~2(~A~B~Y~b~B~AB@~~ + ?A@B?uy&(pcABCLYB) A va A vb 

-k (a4$?ij*-iAybkg + a36~~~yb&)I/Aya$lB A Vu A Vb 
-iA B-/c kD 

+a5(Cijkh Y”@ k h EACEBD 
‘t 

- Ci*j*k*h>ya$Bhck~E -‘* k* ACEBD) A vb A vc A Vd&bcd 

+ h[Y, (Rij*/k* + pgik*g[j* + 4gij*~lk*)~iAh’Bh~*Akd 

+ y~(v~Cjklj;jA~mB~kc~lDEACEBU - h.c.) 

f Y3W-JOncCCijkC~mng g ff fs h l/lmhJBh y h EABECD kr ns A .r-iA --kc h ID 

+ h.c.) 

+ Y4gij*fay~{~IiAya~{ 

+ Y~R~,,~~V~~BEABC~q~~~~~~~y 

+ Y6~N-~)n=(L”vi~‘Cuy~b~~j;‘AyabljB~ABCCLB + h.c.) 

+ MW - ~)nc(L”LES,Y~/ab~BryYabTsC*s@ys 

+ h.c.)lVa A Vb A vc A Vdc&.d, 

c gauging = -igsi (S,m$Ayab$B i- h.c.) Vu A Vb 

+ ig&gi je ( WiAB-j* h, y’lC/B + h.c.) A Vb A vc A Vdc&.d 
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-i-ig&(N~~aya$A + h.c.) A Vb A Vc A Vdc&d 

+ gC&VuN:U;pE AB@Byfa{y + SsVi NiCcuhiA 

+ 66giTVk Wi,h’AkkA + h.C.]V’ A Vb A V’ A VdCa&d 

+ &g2VpotentialVa A Vb A Vc A Vdcnbcd, 
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(B.3) 

-t --n z 
Vpotentiai = (gij*kik& + 4h,“kU,kk)L L 

+g’j’ f,li fJcP;P$ - 315”L”P;P;. 03.4) 

We note that the kinetic terms of the Lagrangian have been written in first-order form to avoid 
the Hodge-operator which would destroy the independence of the variational equations from 
the particular hypersurface of integration. Specifically one introduces auxiliary O-forms 

namely Fa+h , Zg , ?$, Z@ whose variational equations identify them with FO,‘b”, 26, ?i, 
6ia defined in Appendix A. Of course also the spin connection wab has to be treated as an 
independent field: indeed the term C torsion appearing in the Lagrangian has been chosen in 
such a way that the equation of motion of mab gives Ta = 0. 

The analysis of the variational equations for the other p-forms containing at least a 
fermionic vielbein qA (?+?A) then fixes completely all the coefficients, except the coefficients 
of terms that are proportional to Va Vb Vc Vdeabcd, which, after variation, do not contain 
any eA($A) and therefore appear in the space-time equations of motion. 

These undetermined coefficients, however, can be retrieved by comparing the space-time 
equations of motion for the O-form fermion fields hi A, hi*A, tcy, 5‘01 as obtained from the 
Bianchi identities with those obtained from the Lagrangian. In this way all the coefficients 
have been fixed. The result is: 

BI=~~ 82=--f, j?3=4i, /34=-l, 

,95=4, /%5=-4, pT=;, ,58=-l, 
bl = -$, b2 = $A, b3 = 2h, bq = -2h, b5 = h, 
a!yI = -2, a2 = 2, cy3 = ii. i (~4 = -2i, (rg = -6, 
al = -ih, a2 = -iA., a3 = -4ih, 

y1 =3, y2 = -i, 3 
Y3 = Z;‘? y4 = -3h. 

y5=-6Q=l, 4=-i, 

y6 = -iih, y 7 = -iih2, 
61 = 4, 62 = ;, 63 = -g, 64 = -Ah, 

85 = -fh., 86 = &, 87 = -;. 

(B.5) 

In order to obtain the space-time Lagrangian the last step to perform is the restriction of 
the 4-form Lagrangian from superspace to space-time. Namely we restrict all the terms 
to the 6’ = 0, d6’ = 0 hypersurface M4. In practice one first goes to the second-order 
formalism by identifying the auxiliary O-form fields as explained before. Then one expands 
all the forms along the dxp differentials and restricts the superfields to their lowest (0 = 0) 
component. Finally the coefficients of 
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dxF A dx” A dxp A dx” = 
~WPO 
x (,&d4x) (B.6) 

give the Lagrangian density mentioned in Section 8. The overall normalization of the space- 
time action has been chosen such as to be the standard one for the Einstein term. 

Appendix C. Supergravity theory on S7’[2, n] @I HQ[mJ 

In this appendix, as an illustration of the general method and also for its interest in 
applications to tree-level effective Lagrangians of heterotic string theory, we consider the 
specialization of our formulae to the case where the scalar manifold of N = 2 supergravity 
is chosen as in Eq. (1.1). This choice is by no means new in the literature, but the interesting 
point is to utilize the symplectic gauge where the holomorphic prepotential F(X) does not 
exist. This is the gauge chosen by string theory and also that where partial supersymmetry 
breaking can be obtained. 

C. I. The S’T[2, n] special manifolds and the Calabi-Ksentini coordinates 

When we studied the symplectic embeddings of the Sl[m, n] manifolds, defined by 
Eq. (3.19) a study that lead us to the general formula in Eq. (3.34), we remarked that the 
subclass S7[2, n] constitutes a family of special KZhler manifolds: actually a quite relevant 
one. Here we survey the special geometry of this class. 

Besides their applications in the large radius limit of superstring compactifications, the 
S7[2, n] manifolds are interesting under another respect. They provide an example where 
the holomorphic prepotential can be non-existing. Furthermore it is precisely in the sym- 
plectic gauge where F(x) does not exist that the model n = 1, m = 1 of Eq. (1.1) exhibits 
partial supersymmetry breaking N = 2 - N = 1 [29]. 

Consider a standard parametrization of the SO(2, n)/S0(2) x SO(n) manifold, like 
for instance that in Eq. (3.31). In the m = 2 case we can introduce a canonical complex 
structure on the manifold by setting 

cc.11 

The relations satisfied by the upper two rows of the coset representative (consequence of 
Z,(X) being pseudo-orthogonal with respect to metric q4~ = diag(+, +, -, . . . , -)): 

can be summarized into the complex equations 

CC.31 

Eqs. (C.3) are solved by posing 
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@” = J&7 
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(C.4) 

where X” denotes any set of complex parameters, determined up to an overall multiplicative 
constant and satisfying the constraint 

x”x=n4c = 0. (C.5) 

In this way we have proved the identification, as differentiable manifolds, of the coset space 
SO(2, n)/S0(2) x SO(n) with the vanishing locus of the quadric in Eq. (C.5). Taking any 
holomorphic solution of Eq. (C.5), for instance 

l/2 (1 + r*> 
X”(y) = i/2 (1 - y*) , 

( J 

(C.6) 

Ya 

where ya is a set of n independent complex coordinates, inserting it into Eq. (C.4) and 
comparing with Eq. (C.l) we obtain the relation between whatever coordinates we had 
previously used to write the coset representative L(X) and the complex coordinates yn. 
In other words we can regard the matrix L as a function of the ya that are named the 
Calabi-Visentini coordinates [68]. 

Consider in addition the uxion-dilaton field S that parametrizes the SU (1, 1 )/ U ( 1) 
coset according to Eq. (3.30). The special geometry of the manifold S7[2, n] is completely 
specified by writing the holomorphic symplectic section R as follows ([4]): 

(C.7) 

Notice that with the above choice, it is not possible to describe FA as derivatives of any 
prepotential. Yet everything else can be calculated utilizing the formulae we presented in 
the text. The KWer potential is 

K: = xt (S) + K*(y) = - logi(S - S) - log XTnX. 

The Kahler metric is block-diagonal: 

(C.8) 

(C.9) 

as expected. The anomalous magnetic moments-Yukawa couplings Cijk (i = S. a) have a 
very simple expression in the chosen coordinates 

CSab = -exp[~]&b, (C.10) 

all the other components being zero. 
Using the definition of the period matrix given in Eq. (4.37) we obtain 

- 

JVAZ = (S-S) xnxc + xnxc + $AE. (C.11) 
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In order to see that Eq. (C. 11) just coincides with Eq. (3.34) it suffices to note that as a con- 
sequence of its definition (C. 1) and of the pseudo-orthogonality of the coset representative 
L(X), the vector @’ satisfies the following identity: 

WG 
c 

+@% 
A 

= zL,L,(s 1 A C I-A +rlf’A). (C.12) 

Inserting Eq. (C.12) into Eq. (C.l l), formula (3.34) is retrieved. 
This completes the proof that the choice (C.7) of the special geometry holomorphic 

section corresponds to the symplectic embedding (3.26) and (3.28) of the coset manifold 
S7[2, n]. In this symplectic gauge the symplectic transformations of the isometry group are 
the simplest possible ones and the entire group SO (2, n) is represented by means of classical 
transformations that do not mix electric fields with magnetic fields. The disadvantage of 
this basis, if any, is that there is no holomorphic prepotential. To find an F(X) it suffices to 
make a symplectic rotation to a different basis. 

If we set 

x1 = i(l + y*> = -i(l - Qijf’$), x2 = ii(l - y2) = t*, 
(C.13) Xa=ya=t2+‘, a=1 ,..., n-l, 

xa=n = yn = g1+ Qjt'tJ), 

where 

nij = diag(+, -, . . . , -), i,j=2 ,...) n+l. 

Then we can show that 3C E Sp(2n + 2, R) such that 

1 
S 

C ( s,,XixA) = expM)l 

L 

ti 
23 - tia/ati3 - sa/s3 

sap3 
a/at’3 

with 

3(S, t> = $Sqijtitj = $dlJKtltJtK, t’ = S 

dl./K = dljk = qij, 
0 otherwise 

and 

WIJK =bK = 
a33(s, ti) 

atlatJatK’ 

(C.14) 

(C.15) 

(C.16) 

(C. 17) 

This means that in the new basis the symplectic holomorphic section CD can be derived 
from the following cubic prepotential: 

1 d,JKX’XJXK 
F(X) = 5 

X0 . 
(C.18) 
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For instance in the case n = 1 the matrix which does such a job is 

-1 0 0 0 
00010 1 

000 0 
(C. 19) 

0 0 -1 0 

C.2. Comments on the S7[2,2] case: S-duality and R-symmetry 

To conclude let us focus on the case S7[2,2]. This manifold has two coordinates that we 
can either call S and t, in the parametrization of Eq. (C. 16) or S and y in the Calabi-Visentini 
basis. The relation between t and y simplifies enormously in this case, 

t=iY+l 
y-l’ (C.20) 

It is then a matter of choice to regard the holomorphic section in whatever basis as a function 
of y or oft, in addition to S. Independently from this choice the manifold S7[2,2] emerges 
as mod&i space (at tree-level) in a locally N = 2 supersymmetric gauge theory of a rank 
one gauge group, namely SU (2). The two fields spanning the manifold have very different 
interpretations. The field y is the scalar partner of the gauge field that remains massless after 
Higgs mechanism. Its vacuum expectation value is the modulus of the gauge theory. It is the 
same field that occurs also in a globally supersymmetric theory. On the other hand the field 
S is the dilaton-axion. It plays the role of generalized coupling constant and generalized 
theta-angle. There are two SL(2, R) groups embedded in SP(6, R), they act as standard 
fractional linear transformations on the dilaton-axion S and on the special coordinate t for 
the gauge modulus. Using the Calabi-Visentini section of Eq. (C.7) and the embedding 
equations (3.26) and (3.28), we have that 

S-duality: S - - 1 /S is generated by the symplectic matrix 

0 010 0 
0 0010 

Sduality = 
0 0 0 0 -1 

-1 0 0 0 0 

(C.21) 

while T-duality: t + - 1 /t is generated by the symplectic matrix 

R symmetry = 

/-1 000 00 
0 -10 0 0 0 
0 010 00 
0 0 0 -1 0 0 
0 0 0 0 -1 0 

\O 000 01 

(C.22) 
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If we think of the r-field as the modulus of some compact internal manifold then T-duality 
is just the transformation from small to large compactification radius. Looking at the same 
transformation in terms of the y variable its meaning becomes more clear. It is R-symmetry 
y -+ -y, an exact global symmetry of the microscopic Lagrangian. The fact that the 
matrix generating T-duality or R-symmetry is block-diagonal agrees with the fact that 
this is a perturbative symmetry, holding at each order in perturbation theory and never 
exchanging electric with magnetic states. Very different is the nature of S-duality. Since it 
inverts the coupling constant it is by definition non-perturbative. It exchanges strong and 
weak coupling regimes and because of that it is supposed to exchange elementary states 
with soliton states. For this reason it must mix electric with magnetic field strengths and 
it is off-diagonal. These symmetries exist in the microscopic theory which is derived by 
gauging the abelian theories possessing continuous duality symmetries (in this case the two 
SL(2, W) groups). After gauging the continuous duality symmetries will be broken. The 
question is: Will the integer valued symplectic generators of S-duality and R-symmetry 
survive given that they respect the Dirac quantization condition? The answer is yes, but 
in the effective quantum theory they will be represented by new integer valued elements 
of Sp(6, Z) not derivable from the classical embedding. Since the special geometry in 
the effective theory is corrected by the instanton contributions and has a new complicated 
transcendental structure, the duality generators must change basis to adapt themselves to 
the new situation and be integer valued in the new non-perturbative geometry. Alternatively 
one can turn matters around. If we know the new quantum symplectic embedding of the 
discrete duality group, we have essentially determined the non-perturbative geometry. It is 
this point of view that has proven very fruitful in the very recent literature. 

C.3. Momentum maps of HQ[m] and mass matrices 

As we are just going to see the quatemionic manifold HQ[m] is the closest quatemionic 
analogue of a flat hyperK;ihler manifold and the relevant formulae for the metric and the 
momentum maps are almost identical, mutatis mutandis, with the equations surveyed in 
Section 9.3, when we discussed the renormalizable microscopic N = 2 super Yang-Mills 
Lagrangian. 

To describe the coset manifold SO(4, m)/S0(4) x SO(m) we use a family of coset 
representatives L(q) E SO(4, m). A typical choice is the (4 + m) x (4 + m) matrix 

(C.23) 

function of an independent 4 x m matrix q. By definition of the group SO(4, m) we have 

LT7jL = I], r] = diag(+, f, +, +, -, . . . , -1. (C.24) 

We can regard the index range in the fundamental representation of SO(4, m) as split in 
the following way: 

L=L& I, J = 
a, b = 0, 1,2,3, 
t,s = 1,2, . ..m. 

(C.25) 
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and introducing the left invariant l-form 

L-’ dL = 0, 

we can split it into the vielbein and the connections on the coset manifold 
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(C.26) 

From the very definition of 0 one immediately obtains the Maurer-Cartan equations: 

( 8 Eat ab 

) 
@ = (ETya Ast ’ 

Oab SO(4)connection 
Ear Vielbein on the coset, 
Ast SO(m)connecti 

(C.27) 

SEa’ + cab A Eb’ - A” A Ea.’ = 0 (Torsion equation), 
A,gab + @c ,., ocb = _Ea’s A ,@S (S 0 (4) curvature), (C.28) 
SA” - At” A Ars = Eat A EaS = 0 (SO(m) curvature). 

Notice that the vielbein Eat = Et’ dq” carries a vector index a = 0, 1,2, 3 of SO(4) and 
an index f in the vector representation of SO(m) just as it does the coordinate q of the flat 
hyperK(ihler manifold discussed in Eq. ( 10.42). Accordingly the quatemionic generalization 
of Eq. (10.42) is obtained by setting 

1 E LOit, E = Ealt. (C.29) 

The quatemionic metric and the corresponding triplet of hyperK5hler 2-forms are given by 

ds2 = h,, dq” dq” = ET(ldX4 @I l,,,)E, 
K” = ET A (J+lx @ l,,,)E, 

(C.30) 

which is the quatemionic counterpart of Eq. (10.47). Alternatively in the above formula one 
can use the triplet of antiself-dual t’Hooft matrices to define the hyperK%hler structure. Using 
the identities (10.48) and rearranging the 4m vielbein Eait into an m-vector of quatemions 

QE= (C.31) 

which is the quatemionic counterpart of Eq. (10.49), Eqs. (C.30) can be rewritten in a form 
completely analogous to Eqs. (10.50): 

ds2 = 4 tr(QEtlmxmQE>, K = ;QE' A ~~~~~ = ;KXE,T. (C.32) 

Just as in the flat hyperKahler case the action of the gauge group B on the hypermultiplets 
is assumed to be linear and generated by a set of 4m x 4m matrices Tf : 

6/l = Tll + k; = (T,)‘,q”. (C.33) 
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In order for this action to be an isometry of the Euclidean diagonal metric (10.47) it is 
necessary and sufficient that the matrices TI belong to the linearly realized part of the 
isometry algebra SO(4, m), namely SO(4) x SO(m), 

TI E SO(4) x SO(m) c SO(4,m). (C.34) 

The action of G, however, is not only required to be isometrical but also to be triholomorphic. 
This means 

llKX = il dKX + dilKx = VW;, (C.35) 

where W, is the infinitesimal parameter of some SU (2) transformation. A straightforward 
calculation shows that the triholomorphicity condition is that the generators TI should com- 
mute with the tensor product of the t’ Hooft matrices with the unit matrix in m dimensions. 
When this last condition is verified we can write the momentum maps as 

pX = lT J+lx @I I 1 mxm TII. (C.36) 

Using these ingredients the mass matrices and the scalar potential can be written down 
without any further difficulty. The quatemionic vielbein is given in full analogy to Eqs. 
(10.61) and (10.62) by 

U A” = U{; dq bls = @(e,)‘j (C.37) 

and, as before, we identify the symplectic index Q running on 2m values with the pair of 
indicesB,r(B=1,2;t=l,..., m). 

Appendix D. Normalizations and conventions 

Minkowski metric: 

r],b = (1, -1, -1, -1). 

Dejnition of the Riemann tensor: 

Rf = dr: + rp” A r,” 3 -; RrPO cl.?’ A dx* CD.21 

Decomposition of tensors in self-dual and antiself-dual parts (~0123 = 1): 

b’a, yb) = 2%b, b’av Ybl = 2Yab. 
~5, = -boy1 w3, 
YJ = YO? VOV/VO = yi (i = 1,2,3), 
cabcd Y 

cd 
= 2iYabY5. 

v; = Y5, 

CD.11 

(D.3) 

(D.4) 
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Decomposition offermions in chiral and antichiral parts: The indices of the spinors also 
fix their chirality according to the following conventions: 

(D.5) 

03.6) 

Majorana conventions: For any fermion C#J 

4 S $+Y” = f#JC. (D.7) 

Fierz rearrangements: Let us denote by a lower or upper dot right and left chirality, 
respectively. Then: for O-form spinors x ,{ : 

- - 
x&. = -$x. + $YatAYabX.? x.F’ = -&l‘gYaX.. 0.8) 

for 1 -form spinors $A, ?,bB : 

- 
@A$B = ;&&CIA - $Yab@BYab@A> $AFB = ;dBya$A. 

Charge conjugation matrix properties: 

c* = -1, CT = -c, (Cy”)T = cya, (Cyqr = cyab. 

Hermiticity of currents: 
for O-form spinors: 

03.9) 

(D.lO) 

Kc.)+ = ‘Y = X’(‘, 
(x.Y"n+ = :.yax* = -55'y"{., 
(X. y”b6.y = -_’ yabx* = X’ yaby, 

for 1 -form spinors: 

($Aya$B)+ = -lC/Bf@A = -$A’Aya$‘, 

($Ayab@B)t = qByab$A = Il/Afb$& 

(D.ll) 

(D.12) 

(D.13) 

(D. 14) 

(D. 15) 

(D. 16) 

Conventions on Kiihler geometry: The hermitean metric is locally given by 

gij* = aiaj*K, (D.17) 

where the real function K = K* = K(z, z*) is named the Kiihlerpotential. It is defined up 
to the real part of a holomorphic function f(z). Indeed one sees that 

K’(z, z") = K(z, z’*> + Ref (z) (D. 18) 
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gives rise to the same metric gii* as Ic. The transformation in Rq. (D. 18) is named a Kiihler 
transformation. 

To fix our notations we write the formulae for the Levi-Civita connection l-form and 
Riemann curvature 2-form on a K%hler manifold: 

r; = I-& dzk, 
r;** = r$.. dFk*, 

zj = I?jkai dZk* A dz’, 

7?!;*, = $,,, dzk A d?, 

SU(2) and Sp(2n) metrics: 

Gj = g”*(ajgkl*), 
ri* 

k*j* = $$*‘@j*,$‘k*l), 

zjk*, = &* rjil, 

Rj:,, = i&$*. 

(D.19) 

??BEBC = -s& @B = +B* 

c’y& BY = -6Q 
Y’ 

@d = -@cf. 

For any SU(2) vector PA we have 

EABP~ = PA, cABPB = -PA 

and equivalently for Sp(2n) vectors Pa 

C,fiPfl = P,, @@P = -p(” B . 

Reality condition for SU (2) valued matrices H * B: 

(H*B) = gACgBDH* CD. 

(D.20) 

(D.21) 

(D.22) 

(D.23) 

(D.24) 
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